Migration of endothelial cells plays an important role during angiogenesis and the late remodeling phase of arteriogenesis. To investigate mechanisms responsible for cell migration, the authors subcloned a rat heart endothelial cell line (RHE) into a migrating and a nonmigrating cell line (RHE-A and RHE-neg, respectively). Both cell lines form cobblestone patterns in confluent cultures similar to the originating cell line, but RHE-neg cells grow in dense cell islets of several layers whereas RHE-A cells grow in a less dense monolayer. Both cell lines show the same expression pattern of known endothelial cell surface antigens (e.g., FIK-1). The authors used two-dimensional gel electrophoresis technique to look for differentially regulated proteins with possible functional importance for cell migration. The analysis of the cytosolic fraction as well as the membrane fraction revealed differences in the protein expression patterns of RHE-neg and RHE-A cells. Regulated spots were isolated and analyzed by mass spectrometry (MS/MS technique), leading to the identification of proteins potentially responsible for endothelial cell migration, e.g., the intermediate filament vimentin that was exclusively expressed in RHE-A cells. The authors thus have generated a reproducible model that allows the analysis of the proteome responsible for endothelial cell migration.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10623320390233481DOI Listing

Publication Analysis

Top Keywords

cell migration
16
endothelial cell
16
rhe-a cells
12
cell
11
rat heart
8
heart endothelial
8
endothelial cells
8
expression patterns
8
cell lines
8
cells grow
8

Similar Publications

Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.

View Article and Find Full Text PDF

Docetaxel (DTX) is widely utilized in breast cancer treatment. However, cancer cell resistance has limited its anti-tumor efficacy. Some molecules called microRNAs (miRNAs), acting like fine-tuned switches, can influence how breast cancer develops and spreads.

View Article and Find Full Text PDF

The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene.

View Article and Find Full Text PDF

Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.

View Article and Find Full Text PDF

Assisted migration is a tree-planting method where tree species or populations are translocated with the aim of establishing more climate-resilient forests. However, this might potentially increase the susceptibility of translocated trees to herbivory. Stand diversification through planting trees in species or genotypic mixtures may reduce the amount of damage by insect pests, but its effectiveness in mitigation of excess herbivory on climate-matched trees has seldom been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!