Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus.

FEMS Microbiol Lett

Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA.

Published: September 2003

Postbloom fruit drop (PFD) of citrus and Key lime anthracnose (KLA) are caused by Colletotrichum acutatum. Both fungal isolates can infect flower petals, induce young fruit abscission and result in severe yield loss on many citrus cultivars. Previous studies revealed that infection of citrus flowers by C. acutatum caused higher levels of indole-3-acetic acid (IAA), which could be synthesized from the host plant and/or the fungal pathogen. The ability for IAA production by C. acutatum isolates was investigated. Similar to many microorganisms, the production of indole compounds in the medium by C. acutatum was dependent solely on the presence of tryptophan (Trp). In total, 14 PFD and KLA fungal isolates were tested, and revealed that they all were capable of utilizing Trp as a precursor to synthesize IAA and other indole derivatives. High-performance liquid chromatography analysis and chromogenic stains after a fluorescence thin-layer chromatography separation unambiguously identified IAA, tryptophol (TOL), indole-acetaldehyde, indole-acetamide (IAM), indole-pyruvic acid, and indole-lactic acid (ILA) from cultures supplemented with Trp. The data suggest that C. acutatum may synthesize IAA using various pathways. Interestingly, increasing Trp concentrations drastically increased the levels of TOL and ILA, but not IAA and IAM. The ability of C. acutatum to produce IAA and related indole compounds may in part contribute to the increased IAA levels in citrus flowers after infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0378-1097(03)00605-0DOI Listing

Publication Analysis

Top Keywords

indole derivatives
8
colletotrichum acutatum
8
lime anthracnose
8
postbloom fruit
8
fruit drop
8
fungal isolates
8
citrus flowers
8
iaa
8
indole compounds
8
synthesize iaa
8

Similar Publications

Indoles as promising Therapeutics: A review of recent drug discovery efforts.

Bioorg Chem

December 2024

Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India.

Indole, a fundamental heterocyclic core, has emerged as a cornerstone in the medicinal chemistry due to its diverse biological activities and structural versatility. This aromatic compound, present in natural as well as synthetic compounds, offers a versatile platform for the drug discovery. By strategically incorporating functional groups or pharmacophores, researchers can tailor indole-derivatives to target a wide range of diseases.

View Article and Find Full Text PDF

This study aimed to increase the concentrations of vindoline (VDL) and catharanthine (CAT) in Catharanthus roseus plants cultivated in an indoor farming system using artificial lighting and plasma-activated water (PAW). After a 61-days pre-treatment period under fluorescent lamps, plants were exposed to four treatments: white light (W) from the same fluorescent lamps, red light (R) from LEDs, W with PAW, and R with PAW. These combinations were evaluated at two sampling times: 45 days (T1) and 70 days (T2) after the end of pre-treatment (DAP).

View Article and Find Full Text PDF

A novel palladium-catalyzed intramolecular C-H amination via oxidative coupling exploiting inactivated N-substituted aryl amines on indoles for the one-pot synthesis of novel 11-benzo[4,5]imidazo[1,2-]indole derivatives is reported. The optimized reaction conditions accommodated a wide range of electronic variations on both the indole and the pendant aryl amine ring, resulting in products with good to excellent yields.

View Article and Find Full Text PDF

Background: Although gut-derived uremic toxins are increased in azotemic chronic kidney disease (CKD) in cats and implicated in disease progression, it remains unclear if augmented formation or retention of these toxins is associated with the development of renal azotemia.

Objectives: Assess the association between gut-derived toxins (ie, indoxyl-sulfate, p-cresyl-sulfate, and trimethylamine-N-oxide [TMAO]) and the onset of azotemic CKD in cats.

Animals: Forty-eight client-owned cats.

View Article and Find Full Text PDF

The Auxin Response Factors (ARFs) family of transcription factors are the central mediators of auxin-triggered transcriptional regulation. Functionally different classes of extant ARFs operate as antagonistic auxin-dependent and -independent regulators. While part of the evolutionary trajectory to the present auxin response functions has been reconstructed, it is unclear how ARFs emerged, and how early diversification led to functionally different proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!