Deoxynivalenol belongs to a group of highly toxic fungal metabolites produced by Fusarium species that may contaminate food and animal feed, mostly grains. Three different monoclonal mouse anti-deoxynivalenol antibodies were compared for the development of a surface plasmon resonance (SPR)-based immunoassay for the selective and quantitative determination of deoxynivalenol in naturally contaminated matrices. A conjugate of deoxynivalenol with the protein casein was prepared and immobilized on the sensor chip surface. An excess of antibody was added to each test solution before the measurement. The assay was based on the competition for antibody binding between the immobilized deoxynivalenol conjugate on the sensor and the free deoxynivalenol molecules in the test solution. The deoxynivalenol-casein sensor could be reused more than 500 times without significant loss of activity using 6 M guanidine chloride solution for regeneration. The cross-reactivity of the three antibodies in the SPR assay was tested with other trichothecene mycotoxins (3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, nivalenol, HT2-toxin, and T2-toxin). The only sample preparation was extraction with max 80 vol % acetonitrile and 10-fold dilution with the running buffer. The assay had an optimal range between 2.5 and 30 ng/mL deoxynivalenol in the test solution. Most results of the SPR-based assay were in agreement with liquid chromatography/tandem mass spectrometry measurements of naturally contaminated wheat samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf030244d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!