AI Article Synopsis

Article Abstract

Expression of a 2.3-kb RNA species is induced in mammary tumors as a consequence of insertional mutagenesis at the int-3 locus by the mouse mammary tumor virus. The nucleotide sequence and biological activity of this mammary tumor-specific int-3 RNA species were determined. It contains an open reading frame which encodes a 57-kDa protein. The translated protein possesses six nearly contiguous 32-amino-acid repeats which are related to a similar motif in the Saccharomyces cerevisiae cdc-10-encoded cell cycle protein. In addition, the int-3 cdc-10 repeats are bounded by the PEST amino acid sequence motif which is commonly found in proteins having a rapid turnover and may represent sites for phosphorylation. The int-3 cdc-10 repeat sequences are 50% identical to a portion of the intracellular domain of the neurogenic Drosophila notch gene product. Activation of expression of a recombinant int-3 genomic DNA fragment encoding the 2.3-kb RNA species in HC11 mouse mammary epithelial cells in vitro induces anchorage-independent growth in soft agar.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC289064PMC
http://dx.doi.org/10.1128/JVI.66.4.2594-2599.1992DOI Listing

Publication Analysis

Top Keywords

mouse mammary
12
rna species
12
mammary tumor
8
notch gene
8
mammary epithelial
8
epithelial cells
8
23-kb rna
8
int-3 cdc-10
8
int-3
6
mammary
5

Similar Publications

Introduction: Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer to treat. While previous studies have demonstrated that ginsenoside Rh2 induces apoptosis in TNBC cells, the specific molecular targets and underlying mechanisms remain poorly understood. This study aims to uncover the molecular mechanisms through which ginsenoside Rh2 regulates apoptosis and proliferation in TNBC, offering new insights into its therapeutic potential.

View Article and Find Full Text PDF

Increasing evidence has shown that physical exercise remarkably inhibits oncogenesis and progression of numerous cancers and exercise-responsive microRNAs (miRNAs) exert a marked role in exercise-mediated tumor suppression. In this research, expression and prognostic values of exercise-responsive miRNAs were examined in breast cancer (BRCA) and further pan-cancer types. In addition, multiple independent public and in-house cohorts, in vitro assays involving multiple, macrophages, fibroblasts, and tumor cells, and in vivo models were utilized to uncover the tumor-suppressive roles of miR-29a-3p in cancers.

View Article and Find Full Text PDF

Background: Despite promising preclinical studies, the application of DNA methyltransferase inhibitors in treating patients with solid cancers has thus far produced only modest outcomes. The presence of intratumoral heterogeneity in response to DNA methyltransferase inhibitors could significantly influence clinical efficacy, yet our understanding of the single-cell response to these drugs in solid tumors remains very limited.

Methods: In this study, we used cancer/testis antigen genes as a model for methylation-dependent gene expression to examine the activity of DNA methyltransferase inhibitors and their potential synergistic effect with histone deacetylase inhibitors at the single-cancer cell level.

View Article and Find Full Text PDF

Bisecting GlcNAc modification of vesicular GAS6 regulates CAFs activation and breast cancer metastasis.

Cell Commun Signal

January 2025

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, P. R. China.

Background: Cancer-associated fibroblasts (CAFs) are a pivotal component of the tumor microenvironment (TME), playing key roles in tumor initiation, metastasis, and chemoresistance. While glycosylation is known to regulate various cellular processes, its impact on CAFs activation remains insufficiently explored.

Methods: We assessed the correlation between bisecting GlcNAc levels and CAFs markers (α-SMA, PDGFRA, PDGFRB) in breast cancer tissues.

View Article and Find Full Text PDF

Background: ACKR2 is an atypical chemokine receptor that plays a significant role in regulating inflammation by binding to inflammatory CC chemokines and facilitating their degradation. Previous findings suggest that the genetic absence of ACKR2 leads to heightened tumor growth in inflammation-driven models. Conversely, mice lacking ACKR2 exhibit protection against lung metastasis in melanoma and breast cancer models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!