We have amplified by the polymerase chain reaction, cloned, and sequenced genomic segments of 118 human papillomavirus type 16 (HPV-16) isolates from 76 cervical biopsy, 14 cervical smear, 3 vulval biopsy, 2 penile biopsy, 2 anal biopsy, and 1 vaginal biopsy sample and two cell lines. The specimens were taken from patients in four countries--Singapore, Brazil, Tanzania, and Germany. The sequence of a 364-bp fragment of the long control region of the virus revealed 38 variants, most of which differed by one or several point mutations. Phylogenetic trees were constructed by distance matrix methods and a transformation series approach. The trees based on the long control region were supported by another set based on the complete E5 protein-coding region. Both sets had two main branches. Nearly all of the variants from Tanzania were assigned to one (African) branch, and all of the German and most of the Singaporean variants were assigned to the other (Eurasian) branch. While some German and Singaporean variants were identical, each group also contained variants that formed unique branches. In contrast to the group-internal homogeneity of the Singaporean, German, and Tanzanian variants, the Brazilian variants were clearly divided between the two branches. Exceptions to this were the seven Singaporean isolates with mutational patterns typical of the Tanzanian isolates. The data suggest that HPV-16 evolved separately for a long period in Africa and Eurasia. Representatives of both branches may have been transferred to Brazil via past colonial immigration. The comparable efficiencies of transfer of the African and the Eurasian variants to the New World suggest pandemic spread of HPV-16 in past centuries. Representatives of the African branch were possibly transferred to the Far East along old Arab and Indonesian sailing routes. Our data also support the view that HPV-16 is a well-defined virus type, since the variants show only a maximal genomic divergence of about 5%. The small amount of divergence in any one geographic location and the lack of marked divergence between the Tanzanian and Brazilian African genome variants two centuries after their likely introduction into the New World suggest a very slow rate of viral evolution. The phylogenetic tree therefore probably represents a minimum of several centuries of evolution, if not an age equal to that of the respective human races.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC288996 | PMC |
http://dx.doi.org/10.1128/JVI.66.4.2057-2066.1992 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!