Selected cell envelope components of Porphyromonas gingivalis were tested in a BALB/c mouse model in an attempt to elucidate further the outer membrane components of this putative oral pathogen that might be considered as virulence factors in host tissue destruction. Lipopolysaccharide (LPS), outer membrane, and outer membrane vesicles of P. gingivalis W50, ATCC 53977, and ATCC 33277 were selected to examine an immunological approach for interference with progressing tissue destruction. Mice were actively immunized with heat-killed (H-K) or Formalin-killed (F-K) whole cells or with the outer membrane fraction, LPS, or outer membrane vesicles of the invasive strain P. gingivalis W50. The induction of invasive spreading lesions with tissue destruction and lethality were compared among different immunization groups in normal, dexamethasone-treated (dexamethasone alters neutrophil function at the inflammatory site), and galactosamine-sensitized (galactosamine sensitization increases endotoxin sensitivity) mice after challenge infection with the homologous strain (W50) and heterologous strains (ATCC 53977 and ATCC 33277). Enzyme-linked immunosorbent assay analyses revealed significantly elevated immunoglobulin G and M antibody responses after immunization with H-K or F-K cells or the outer membrane fraction compared with those of nonimmunized mice. The killed whole-cell vaccines provided significantly greater protection against challenge infection in normal mice (decreased lesion size and death) than did either the outer membrane fraction or LPS immunization. The lesion development observed in dexamethasone-pretreated mice was significantly enhanced compared with that of normal mice after challenge with P. gingivalis. Immunization with P. gingivalis W50 provided less protection against heterologous challenge infection with P. gingivalis ATCC 53977; however, some species-specific antigens were recognized and induced protective immunity. Only viable P. gingivalis induced a spreading lesion in normal, dexamethasone-treated, or galactosamine-sensitized mice; F-K or H-K bacteria did not induce lesions. The F-K and outer membrane vesicle immunization offered greater protection from lesion induction than did the H-K immunogen after challenge infection simultaneous with galactosamine sensitization. The H-K cell challenge with galactosamine sensitization produced 100% mortality without lesion induction, suggesting that LPS or LPS-associated outer membrane molecules were functioning like endotoxin. Likewise, P. gingivalis W50 LPS (1 micrograms per animal) administered intravenously produced 80% mortality in galactosamine-sensitized mice. In contrast to the effects of immunization on lesion development, immunization with H-K or F-K cells or LPS provided no protection against intravenous challenge with LPS; 100% of the mice died from acute endotoxin toxicity.(ABSTRACT TRUNCATED AT 400 WORDS)

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC257018PMC
http://dx.doi.org/10.1128/iai.60.4.1455-1464.1992DOI Listing

Publication Analysis

Top Keywords

outer membrane
36
gingivalis w50
16
challenge infection
16
tissue destruction
12
atcc 53977
12
f-k cells
12
membrane fraction
12
galactosamine sensitization
12
mice
10
outer
9

Similar Publications

TOM40 as a prognostic oncogene for oral squamous cell carcinoma prognosis.

BMC Cancer

January 2025

Department of Otorhinolaryngology, Shenzhen Key Laboratory of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China.

Background: To investigate the role of the translocase of the outer mitochondrial membrane 40 (TOM40) in oral squamous cell carcinoma (OSCC) with the aim of identifying new biomarkers or potential therapeutic targets.

Methods: TOM40 expression level in OSCC was evaluated using datasets downloaded from The Cancer Genome Atlas (TCGA), as well as clinical data. The correlation between TOM40 expression level and the clinicopathological parameters and survival were analyzed in TCGA.

View Article and Find Full Text PDF

A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly.

Genome Med

January 2025

Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.

Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.

Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.

View Article and Find Full Text PDF

Mitochondrial Rho-GTPase 1 (MIRO1) is an outer mitochondrial membrane protein which regulates mitochondrial transport and mitophagy in mitosis. In present study, we reported the crucial roles of MIRO1 in mammalian oocyte meiosis and its potential relationship with aging. We found that MIRO1 expressed in mouse and porcine oocytes, and its expression decreased in aged mice.

View Article and Find Full Text PDF

Siderophore synthetase-receptor gene coevolution reveals habitat- and pathogen-specific bacterial iron interaction networks.

Sci Adv

January 2025

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.

Bacterial social interactions play crucial roles in various ecological, medical, and biotechnological contexts. However, predicting these interactions from genome sequences is notoriously difficult. Here, we developed bioinformatic tools to predict whether secreted iron-scavenging siderophores stimulate or inhibit the growth of community members.

View Article and Find Full Text PDF

Understanding the neurobiological mechanisms of LPS‑induced memory impairment.

Acta Neurobiol Exp (Wars)

January 2025

Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran; Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran.

In recent years, growing evidence suggests that lipopolysaccharide (LPS), a bacterial endotoxin found in the outer membrane of gram‑negative bacteria, can influence cognitive functions, particularly memory formation and retrieval. However, the underlying mechanisms through which LPS exerts its effects on memory remain incompletely understood. This review used various electronic databases, including PubMed, Scopus, and Web of Science, to identify relevant studies published between 2000 and 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!