On the redox equilibrium between H2 and hydrogenase.

Biochim Biophys Acta

E.C. Slater Institute for Biochemical Research, University of Amsterdam, The Netherlands.

Published: February 1992

Redox titrations of the nickel ion in active hydrogenase from Methanobacterium thermoautotrophicum and Chromatium vinosum were performed in the absence of artificial redox mediators, by variation of the H2-partial pressure. These experiments revealed a redox behaviour of the nickel ion which differed remarkably from previous redox titrations in the presence of redox mediators. Notably the EPR signal of the species earlier characterized as monovalent nickel with bound hydrogen, behaved as an n = 2 redox component upon reduction under varying H2-partial pressures. The EPR signal was not a transient one and persisted upon removal of hydrogen. Possible redox processes to explain these observations are discussed. A similar behaviour of nickel was also observed in enzyme as present in intact cells of M. thermoautotrophicum. These results suggest that nickel hydrogenases possess a second site for reaction with H2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0167-4838(92)90385-qDOI Listing

Publication Analysis

Top Keywords

redox
8
redox titrations
8
nickel ion
8
redox mediators
8
behaviour nickel
8
epr signal
8
nickel
5
redox equilibrium
4
equilibrium hydrogenase
4
hydrogenase redox
4

Similar Publications

Transient methods for understanding the properties of strongly oxidizing radicals.

Chem Commun (Camb)

January 2025

Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.

This review discusses the properties of strongly oxidizing radicals in organic and aqueous media and highlights the challenges in obtaining accurate values of their reduction potentials. Transient redox equilibrium methods based on the use of strong photooxidants or initiated by pulse radiolysis are shown to provide versatile approaches for decoupling electron transfer reactions from follow-up reactivity of unstable radical species, resulting in accurate values of reduction potentials of very positive couples, including some solvent radical cations. We also show that correlations of reduction potentials with Hammett ∑+p parameters, as well as gas phase ionization potentials, can be used to estimate the redox properties of unknown couples within a homologous series of compounds.

View Article and Find Full Text PDF

One strategy for CO mitigation is using photosynthetic microorganisms to sequester CO under high concentrations, such as in flue gases. While elevated CO levels generally promote growth, excessively high levels inhibit growth through uncertain mechanisms. This study investigated the physiology of the cyanobacterium Synechocystis sp.

View Article and Find Full Text PDF

Exogenous Coreactant-Free Electrocatalytic Reactive Oxygen Species-Driven Dual-Signal Molecularly Imprinted Electrochemiluminescence Sensor for the Detection of Trenbolone.

Anal Chem

January 2025

The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.

Conventional dual-signal electrochemiluminescence (ECL) sensors feature high sensitivity and reliability, but the involvement of coreactants inevitably results in a complex configuration and shows reproducibility risk. Here, we propose an exogenous coreactant-free dual-signal platform, comprising luminol (anodic luminophore), CdSe quantum dots (cathodic luminophore), and CoO/TiC electrocatalyst (coreaction promoter). At different redox potentials, CoO/TiC induces water oxidation and oxygen reduction to produce OH and O radicals, which subsequently drive cathodic and anodic ECL emission, respectively.

View Article and Find Full Text PDF

Extracellular thiol isomerase ERp5 regulates integrin αIIbβ3 activation by inhibition of fibrinogen binding.

Platelets

December 2025

Cyrus Tang Medical Institute, The Fourth Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.

Recent studies have shown that anti-ERp5 antibodies inhibit platelet activation and thrombus formation; Moreover, ERp5-deficient platelets exhibit enhanced platelet reactivity via regulation of endoplasmic reticulum (ER) stress. In this study, we used a new ERp5-knockout mouse model as well as recombinant ERp5 (rERp5) protein, to examine the role of ERp5 in platelet function and thrombosis. Although platelet-specific ERp5-deficient mice had decreased platelet count, the mice had shortened tail-bleeding times and enhanced platelet accumulation in FeCl-induced mesenteric artery injury, compared with wild-type mice.

View Article and Find Full Text PDF

The experimental electron density distributions in two coordination compounds - one with a central Cu(I) atom and the other with Cu(II), coordinated by the same biphenyldiimino dithioether (bite) type of ligand - have been obtained from high-resolution X-ray reflection data to model the possible electron predisposition for the redox reaction in blue copper proteins. The bite ligand has been adapted to the conformation required by the central atom.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!