We present here a simple and rapid method which allows relatively large quantities of oxygen-evolving photosystem II- (PS-II-) enriched particles to be obtained from wild-type and mutants of the cyanobacterium Synechocystis 6803. This method is based on that of Burnap et al. [Burnap, R., Koike, H., Sotiropoulou, G., Sherman, L. A., & Inoue, Y. (1989) Photosynth. Res. 22, 123-130] but is modified so that the whole preparation, from cells to PS-II particles, is achieved in 10 h and involves only one purification step. The purified preparation exhibits a 5-6-fold increase of O2-evolution activity on a chlorophyll basis over the thylakoids. The ratio of PS-I to PS-II is about 0.14:1 in the preparation. The secondary quinone electron acceptor, QB, is present in this preparation as demonstrated by thermoluminescence studies. These PS-II particles are well-suited to spectroscopic studies as demonstrated by the range of EPR signals arising from components of PS-II that are easily detectable. Among the EPR signals presented are those from a formal S3-state, attributed to an oxidized amino acid interacting magnetically with the Mn complex in Ca(2+)-deficient PS-II particles, and from S2 modified by the replacement of Ca2+ by Sr2+. Neither of these signals has been previously reported in cyanobacteria. Their detection under these conditions indicates a similar lesion caused by Ca2+ depletion in both plants and cyanobacteria. The protocol has also been applied to mutants which have site-specific changes in PS-II. Data are presented on mutants having changes on the electron donor (Y160F) and electron acceptor (G215W) side of the D2 polypeptide.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00122a030DOI Listing

Publication Analysis

Top Keywords

ps-ii particles
12
oxygen-evolving photosystem
8
electron acceptor
8
epr signals
8
ps-ii
6
preparation
5
photosystem preparation
4
preparation wild
4
wild type
4
type photosystem
4

Similar Publications

Iron Nanostructure Primes Arbuscular Mycorrhizal Fungi Symbiosis Tightly Connecting Maize Leaf Photosynthesis via a Nanofilm Effect.

ACS Nano

July 2024

State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.

Article Synopsis
  • The study explores how iron nanostructures, specifically nanoscale zerovalent iron (nZVI), can enhance plant growth, particularly when combined with arbuscular mycorrhizal fungi (AMF).
  • An optimal dosage of 1.0 g·kg of nZVI can boost maize growth significantly, while excessive amounts harm plant roots and disrupt nutrient uptake, unlike FeSO which has minimal effects.
  • The appropriate nZVI facilitates the formation of a supportive nano structure on AMF, improving root colonization, gas exchange, and overall plant health, indicating nZVI plays a crucial role over traditional iron salts.
View Article and Find Full Text PDF

Comprehensive assessment of chlorination disinfection on microplastic-associated biofilms.

J Hazard Mater

August 2024

Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea. Electronic address:

Chlorination on microplastic (MP) biofilms was comprehensively investigated with respect to disinfection efficiency, morphology, and core microbiome. The experiments were performed under various conditions: i) MP particles; polypropylene (PP) and polystyrene (PS), ii) MP biofilms; Escherichia coli for single-species and river water microorganisms for multiple-species, iii) different chlorine concentrations, and iv) different chlorine exposure periods. As a result, chlorination effectively inactivated the MP biofilm microorganisms.

View Article and Find Full Text PDF

Suspended particulate matter (SPM), an important component of the natural water environment, can act as a carrier of many pollutants that affect aquatic organisms. In the present study, the effect of SPM obtained from Jinjiang Estuary on the physiological, biochemical, and photosynthetic properties of typical freshwater algae (Chlorella pyrenoidosa) was investigated. The results showed that under different concentrations of SPM treatment, the superoxide dismutase (SOD), catalase (CAT) activities, and malondialdehyde (MDA) content of C.

View Article and Find Full Text PDF

Electrogenic reactions in Mn-depleted photosystem II core particles in the presence of synthetic binuclear Mn complexes.

Biochem Biophys Res Commun

September 2018

A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Leninskie Gory 1-40, Moscow, 119992, Russia. Electronic address:

An electrometrical technique was used to investigate electron transfer between synthetic binuclear manganese (Mn) complexes, designated M - 2 and M - 3, and the redox-active neutral tyrosine radical (Y) in proteoliposomes containing Mn-depleted photosystem II (PS II) core particles in response to single laser flashes. In the absence of Mn-containing compounds, the observed flash-induced membrane potential (ΔΨ) decay was mainly due to charge recombination between the reduced primary quinone acceptor Q and the oxidized Y. More significant slowing down of the ΔΨ decay in the presence of lower concentrations of M - 2 and M - 3 associated with electron donation from Mn in the Mn-binding site to Y indicates that these synthetic compounds are more effective electron donors than MnCl.

View Article and Find Full Text PDF

Double Photosystems-Based 'Z-Scheme' Photoelectrochemical Sensing Mode for Ultrasensitive Detection of Disease Biomarker Accompanying Three-Dimensional DNA Walker.

Anal Chem

June 2018

Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry , Fuzhou University, Fuzhou 350116 , People's Republic of China.

A new double photosystems-based 'Z-scheme' photoelectrochemical (PEC) sensing platform is designed for ultrasensitive detection of prostate-specific antigen (PSA) by coupling with a three-dimensional (3D) DNA walker. Two photosystems consist of CdS quantum dots (photosystem I; PS I) and BiVO photoactive materials (photosystem II; PS II), whereas gold nanoparticles (AuNPs) photodeposited on high-active {010} facets of BiVO are used as the electron mediators to promote electron transfer from conduction band of PS II to valence band of PS I. 3D DNA walker-based amplification strategy is carried out between hairpin DNA1 conjugated onto the AuNP, hairpin DNA2 labeled with CdS quantum dot (QD-H2), and DNA walker complementary with the PSA aptamer modified to a magnetic bead (Apt-MB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!