Three novel functional variants of human U5 small nuclear RNA.

Mol Cell Biol

Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536-0182.

Published: February 1992

We have identified and characterized three new variants of U5 small nuclear RNA (snRNA) from HeLa cells, called U5D, U5E, and U5F. Each variant has a 2,2,7-trimethylguanosine cap and is packaged into an Sm-precipitable small nuclear ribonucleoprotein (snRNP) particle. All retain the evolutionarily invariant 9-base loop at the top of stem 1; however, numerous base changes relative to the abundant forms of U5 snRNA are present in other regions of the RNAs, including a loop that is part of the yeast U5 minimal domain required for viability and has been shown to bind a protein in HeLa extracts. U5E and U5F each constitute 7% of the total U5 population in HeLa cells and are slightly longer than the previously characterized human U5 (A, B, and C) species. U5D, which composes 5% of HeLa cell U5 snRNAs, is present in two forms: a full-length species, U5DL, and a shorter species, U5DS, which is truncated by 15 nucleotides at its 3' end and therefore resembles the short form of U5 (snR7S) in Saccharomyces cerevisiae. We have established conditions that allow specific detection of the individual U5 variants by either Northern blotting (RNA blotting) or primer extension; likewise, U5E and U5F can be specifically and completely degraded in splicing extracts by oligonucleotide-directed RNase H cleavage. All variant U5 snRNAs are assembled into functional particles, as indicated by their immunoprecipitability with anti-(U5) RNP antibodies, their incorporation into the U4/U5/U6 tri-snRNP complex, and their presence in affinity-purified spliceosomes. The higher abundance of these U5 variants in 293 cells compared with that in HeLa cells suggests possible roles in alternative splicing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC364287PMC
http://dx.doi.org/10.1128/mcb.12.2.734-746.1992DOI Listing

Publication Analysis

Top Keywords

small nuclear
12
hela cells
12
u5e u5f
12
nuclear rna
8
hela
5
three novel
4
novel functional
4
variants
4
functional variants
4
variants human
4

Similar Publications

Manual segmentation of lesions, required for radiotherapy planning and follow-up, is time-consuming and error-prone. Automatic detection and segmentation can assist radiologists in these tasks. This work explores the automated detection and segmentation of brain metastases (BMs) in longitudinal MRIs.

View Article and Find Full Text PDF

Advancements in pseudouridine modifying enzyme and cancer.

Front Cell Dev Biol

December 2024

Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China.

Pseudouridine (Ψ) is a post-transcriptional modifier of RNA, often referred to as the 'fifth nucleotide' owing to its regulatory role in various biological functions as well as because of its significant involvement in the pathogenesis of human cancer. In recent years, research has revealed various Ψ modifications in different RNA types, including messenger RNA, transfer RNA, ribosomal RNA, small nuclear RNA, and long noncoding RNA. Pseudouridylation can significantly alter RNA structure and thermodynamic stability, as the Ψ-adenine (A) base pair is more stable than the typical uridine (U)-A base pair is due to its structural similarity to adenine.

View Article and Find Full Text PDF

Objectives: Pediatric head and spinal traumas are challenging for healthcare professionals due to their potential for severe consequences. Understanding optimal management methods is crucial to prevent complications and improve outcomes. Head and spinal injuries are common in children, with falls and motor vehicle collisions as the leading causes.

View Article and Find Full Text PDF

Plastome characterization and its phylogenetic implications on Lithocarpus (Fagaceae).

BMC Plant Biol

December 2024

Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.

Background: The genus Lithocarpus is a species-rich dominant woody lineage in East Asian evergreen broad-leaved forests. Despite its ecological and economic significance, the plastome structure and evolutionary history of the genus remain poorly understood. In this study, we comprehensively analyzed the 34 plastomes representing 33 Lithocarpus species.

View Article and Find Full Text PDF

It has become increasingly evident that the conformational distributions of intrinsically disordered proteins or regions are strongly dependent on their amino acid compositions and sequence. To facilitate a systematic investigation of these sequence-ensemble relationships, we selected a set of 16 naturally occurring intrinsically disordered regions of identical length but with large differences in amino acid composition, hydrophobicity, and charge patterning. We probed their conformational ensembles with single-molecule Förster resonance energy transfer (FRET), complemented by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy as well as small-angle X-ray scattering (SAXS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!