Download full-text PDF

Source

Publication Analysis

Top Keywords

toxicologic studies
4
studies zinc
4
zinc disodium
4
disodium ethylene
4
ethylene bisdithiocarbamates
4
toxicologic
1
zinc
1
disodium
1
ethylene
1
bisdithiocarbamates
1

Similar Publications

Bacopa monnieri Extract Diminish Hypoxia-Induced Anxiety by Regulating HIF-1α Signaling and Enhancing the Antioxidant Defense System in Hippocampus.

Neuromolecular Med

January 2025

Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.

Hypoxia is a significant stressor, and stabilized hypoxia-inducible factor-1α (HIF-1α) regulates the expression of numerous genes, leading to various biochemical, molecular, physiological and genomic changes. The body's oxygen-sensing system activates gene expression to protect brain tissues from hypoxia. Gamma-aminobutyric acid, an inhibitory neurotransmitter, regulates brain excitability during hypoxia through the activation of HIF-1 α.

View Article and Find Full Text PDF

2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ) is an emerging chlorinated disinfection byproduct (DBP) in bodies of water. However, this compound poses an unknown toxic effect on cyanobacteria. In this study, the toxicological mechanisms of 2,6-DCBQ in () were investigated through physiological and nontargeted metabolomic assessments.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) have been widely used in daily life but they cause certain impacts on the environment due to their unique carbon-fluorine chemical bonds that are difficult to degrade in the environment. Toxicological studies on PFASs and their alternatives have mainly focused on vertebrates, while terrestrial and aquatic invertebrates have been studied to a lesser extent. As invertebrates at the bottom of the food chain play a crucial role in the whole ecological chain, it is necessary to investigate the toxicity of PFASs to invertebrates.

View Article and Find Full Text PDF

Agricultural pollutants co-interact and affect the vital functions, stress tolerance, resistance, immunity, and survival of insect pests. These metal-herbicide interactions have inevitable but remarkable effects on insects, which remain poorly understood. Here, we examined the effects of the interactions among zinc (Zn), iron (Fe), and paraquat (PQ) at a sublethal dose on the physiological response of the Egyptian cotton leafworm .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!