NK activity is regulated by arachidonic acid metabolites. More precisely PGE2 and LTB4 decreases and increases respectively non-MHC-restricted cytotoxicity in humans. We have observed similar data in mice since NK activity was inhibited by PGE2 (10(-6) to 10(-8) M) and enhanced by LTB4 (10(-8) to 10(-12) M). On the other hand when PGE2 and LTB4 were combined during the same assay the lysis percentage was smaller than the one which was induced by PGE2 alone. Because PGE2 increases intracellular cyclic AMP and that LTB4 augments cyclic GMP we used a cAMP inducer (forskolin) and a cGMP analogue (8 Br-cGMP) instead of eicosanoids and we observed similar data (i.e., a decrease of natural killing) as when PGE2 was combined with LTB4. When splenocytes are cultured for 1-4 days alone, cytotoxic activity decreases unless they are cultured in the presence of indomethacin. Cytotoxic activity of spleen cells cultured in the presence of PGE2 or LTB4 is respectively decreased or increased. However, splenocytes that were cultured alone for at least 24 hr were no longer sensitive to inhibition by PGE2 but were still PGE2-sensitive when cultured in the presence of LTB4.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0008-8749(92)90117-8DOI Listing

Publication Analysis

Top Keywords

cytotoxic activity
12
pge2 ltb4
12
cultured presence
12
pge2
9
ltb4
8
observed data
8
splenocytes cultured
8
activity
5
cultured
5
ltb4 inhibition
4

Similar Publications

Background: Celiac disease (CeD) has shown an association with autoimmune disorders including vitiligo and alopecia areata (AA). Ritlecitinib, a JAK3 and TEC kinase family inhibitor, has been approved for treatment of patients with AA and is in late-stage development for vitiligo. Ritlecitinib inhibits cytotoxic T cells, NK cells, and B cells which play a role in the pathogenesis of CeD.

View Article and Find Full Text PDF

A chemical examination of a root extract of led to the isolation and identification of 23 compounds, including oxazole-type alkaloids and isoflavonoid derivatives. Notably, three oxazole-type alkaloids (, , and ) and two isoflavonoid derivatives ( and ) were obtained from a natural source for the first time. In addition, derived 2,5-diphenyloxazoles and their derivatives were synthesized.

View Article and Find Full Text PDF

Background: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)- and therapy resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state specific targetable cell-surface proteins.

Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES-dominant to define subtype-specific and pan-neuroblastoma gene sets.

View Article and Find Full Text PDF

Evaluation of Complement-Dependent Cytotoxicity Assays for Gene-Edited Pig-to-Human Xenotransplantation.

Xenotransplantation

January 2025

Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Background: Gene-edited pigs for xenotransplantation usually contain one or more transgenes encoding human complement regulatory proteins (CRPs). Because of species differences, human CRP(s) expressed in gene-edited pigs may have difficulty inhibiting the activation of exogenous rabbit complement added to a complement-dependent cytotoxicity (CDC) assay. The use of human complement instead of rabbit complement in CDC experiments may more accurately reflect the actual regulatory activity of human CRP(s).

View Article and Find Full Text PDF

Breast cancer patients experience more severe emotional distress and depression compared to those with other cancers. Selective serotonin reuptake inhibitors (SSRIs), like citalopram, are commonly used to treat depression. However, the link between SSRI use and breast cancer progression is debated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!