Hydroxylapatite block closure of oroantral fistulas: report of cases.

J Oral Maxillofac Surg

Department of Oral and Maxillofacial Surgery, John Peter Smith Hospital, Fort Worth, TX 76104.

Published: January 1992

Download full-text PDF

Source
http://dx.doi.org/10.1016/0278-2391(92)90201-aDOI Listing

Publication Analysis

Top Keywords

hydroxylapatite block
4
block closure
4
closure oroantral
4
oroantral fistulas
4
fistulas report
4
report cases
4
hydroxylapatite
1
closure
1
oroantral
1
fistulas
1

Similar Publications

Long-Term Natural Hydroxyapatite and Synthetic Collagen Hydroxyapatite Enhance Bone Regeneration and Implant Fixation Similar to Allograft in a Sheep Model of Implant Integration.

Calcif Tissue Int

January 2025

Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.

There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.

View Article and Find Full Text PDF

Bone tissue engineering demands advanced biomaterials with tailored properties. In this regard, composite scaffolds offer a strategy to integrate the desired functionalities. These scaffolds are expected to provide sufficient cellular activities while maintaining the required strength necessary for the bone repair for which they are intended.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to evaluate the effectiveness of GAPI peptide in combating bacteria and promoting remineralization in artificial enamel caries created by Streptococcus mutans.
  • GAPI treatment significantly reduced S. mutans viability and biofilm growth, resulting in less enamel damage and greater remineralization compared to the control group.
  • Findings indicated that GAPI not only decreased lesion depth and mineral loss but also improved the calcium-to-phosphorus ratio and hardness of enamel, suggesting strong antibacterial and remineralizing properties.
View Article and Find Full Text PDF

Effect of Hydroxyapatite Nanowires on Formation and Bioactivity of Osteoblastic Cell Spheroid.

ACS Biomater Sci Eng

December 2024

School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China.

Compared with traditional high-density cell spheroids, which are more prone to core necrosis, nanowires effectively improve the biological activity of core cells in spheroids, emanating more innovations for optimizing the internal cell survival environment and providing differentiation signals. In this study, hydroxyapatite nanowires (HAW), which provide numerous material exchange channels for internal cells by interpenetrating into cell spheroids, were added to osteoblast precursor (MC3T3-E1) cell spheroids. HAW, synthesized using the hydrothermal method, was used as a regulatory material to prepare uniformly sized 3D composite spheroids with good biological activity.

View Article and Find Full Text PDF

Extensive efforts have been made to improve the understanding of hard tissue regeneration, essential for advancing medical applications like bone graft materials. However, the mechanisms of bone biomineralization, particularly the regulation of hydroxyapatite growth by proteins/peptides, remain debated. Small biomolecules such as amino acids are ideal for studying these mechanisms due to their simplicity and relevance as protein/peptide building blocks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!