Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0278-2391(92)90201-a | DOI Listing |
Calcif Tissue Int
January 2025
Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.
There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, třída Tomáše Bati 5678, 76001 Zlín, Czech Republic.
Bone tissue engineering demands advanced biomaterials with tailored properties. In this regard, composite scaffolds offer a strategy to integrate the desired functionalities. These scaffolds are expected to provide sufficient cellular activities while maintaining the required strength necessary for the bone repair for which they are intended.
View Article and Find Full Text PDFJ Dent
December 2024
Faculty of Dentistry, The University of Hong Kong, Hong Kong, China. Electronic address:
ACS Biomater Sci Eng
December 2024
School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China.
Compared with traditional high-density cell spheroids, which are more prone to core necrosis, nanowires effectively improve the biological activity of core cells in spheroids, emanating more innovations for optimizing the internal cell survival environment and providing differentiation signals. In this study, hydroxyapatite nanowires (HAW), which provide numerous material exchange channels for internal cells by interpenetrating into cell spheroids, were added to osteoblast precursor (MC3T3-E1) cell spheroids. HAW, synthesized using the hydrothermal method, was used as a regulatory material to prepare uniformly sized 3D composite spheroids with good biological activity.
View Article and Find Full Text PDFLangmuir
October 2024
Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, 71468-64685, Shiraz, Iran.
Extensive efforts have been made to improve the understanding of hard tissue regeneration, essential for advancing medical applications like bone graft materials. However, the mechanisms of bone biomineralization, particularly the regulation of hydroxyapatite growth by proteins/peptides, remain debated. Small biomolecules such as amino acids are ideal for studying these mechanisms due to their simplicity and relevance as protein/peptide building blocks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!