Characterization of AluI repeats of zebrafish (Brachydanio rerio).

Mol Mar Biol Biotechnol

Department of Fisheries and Wildlife, University of Minnesota, St Paul 55108.

Published: April 1992

Two families of repetitive DNA sequences were isolated from the zebrafish genome and characterized. Eight different sequences were sequenced and classified by two standards, their (G + C) composition and their lengths. For convenience, the sequences were first divided into two types. Type I was (A + T)-rich, was repeated approximately 500,000 times, and constituted approximately 5% of the zebrafish genome. Type II was (G + C)-rich, was reiterated approximately 90,000 times, and comprised approximately 0.5% of the genome. Agarose gel electrophoresis of zebrafish DNA cleaved with AluI revealed three distinguishable bands of repetitive fragments: large (approximately 180 bp, designated RFAL), medium (approximately 140 bp, RFAM), and small (approximately 90 bp, RFAS). The RFAL fragments contained both type I and type II sequences. Limited digestion of genomic DNA indicated that RFAL and RFAM were tandemly arranged in the genome, whereas RFAS showed a mixed pattern of both tandem and interspersed repeated arrangements. Although inclusion of a repetitive sequence in a transgenic construct did not appreciably accelerate homologous integration of transgenes into the zebrafish genome, the AluI sequences could facilitate transgene mapping following chromosomal integration.

Download full-text PDF

Source

Publication Analysis

Top Keywords

zebrafish genome
12
zebrafish
5
sequences
5
genome
5
characterization alui
4
alui repeats
4
repeats zebrafish
4
zebrafish brachydanio
4
brachydanio rerio
4
rerio families
4

Similar Publications

Optimization of genome editing by CRISPR ribonucleoprotein for high efficiency of germline transmission of Sox9 in zebrafish.

N Biotechnol

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China. Electronic address:

Primordial germ cells (PGCs) are the first germline stem cells to emerge during early embryonic development and are essential for the propagation and survival of species. Genome editing creates mutagenesis possibilities in vivo, but the generation of precise mutations in PGCs is still challenging. Here, we report an optimized approach for highly efficient genome editing via introducing biallelic variations in early embryos in zebrafish.

View Article and Find Full Text PDF

Human Oncostatin M deficiency underlies an inherited severe bone marrow failure syndrome.

J Clin Invest

January 2025

Laboratory of Genome Dynamics in the Immune, INSERM UMR 116, Équipe Labellisée LIGUE 2023, Paris, France.

Oncostatin M (OSM) is a cytokine with the unique ability to interact with both the OSM receptor (OSMR) and the leukemia inhibitory factor receptor (LIFR). On the other hand, OSMR interacts with IL31RA to form the interleukin-31 receptor. This intricate network of cytokines and receptors makes it difficult to understand the specific function of OSM.

View Article and Find Full Text PDF

Deciphering the toxic effects of polystyrene nanoparticles on erythropoiesis at single-cell resolution.

Zool Res

January 2025

Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea.

Polystyrene nanoparticles pose significant toxicological risks to aquatic ecosystems, yet their impact on zebrafish ( ) embryonic development, particularly erythropoiesis, remains underexplored. This study used single-cell RNA sequencing to comprehensively evaluate the effects of polystyrene nanoparticle exposure on erythropoiesis in zebrafish embryos. validation experiments corroborated the transcriptomic findings, revealing that polystyrene nanoparticle exposure disrupted erythrocyte differentiation, as evidenced by the decrease in mature erythrocytes and concomitant increase in immature erythrocytes.

View Article and Find Full Text PDF

Congenital heart disease (CHD) is a prevalent condition characterized by defective heart development, causing premature death and stillbirths among infants. Genome-wide association studies (GWASs) have provided insights into the role of genetic variants in CHD pathogenesis through the identification of a comprehensive set of single-nucleotide polymorphisms (SNPs). Notably, 90-95% of these variants reside in the noncoding genome, complicating the understanding of their underlying mechanisms.

View Article and Find Full Text PDF

Obtaining viable cell suspension that accurately represents the diversity of complex tissues is challenging due to the distinct characteristics of each cell type. Here, we present a protocol for preparing a single-cell suspension of the zebrafish embryonic whole heart, detailing steps for heart extraction, cell dissociation, quantification, and quality assessment. This suspension is compatible with downstream analysis on various single-cell platforms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!