Download full-text PDF

Source
http://dx.doi.org/10.1152/jappl.1953.6.1.67DOI Listing

Publication Analysis

Top Keywords

physiological effects
4
effects condenser
4
condenser discharges
4
discharges application
4
application tissue
4
tissue stimulation
4
stimulation ventricular
4
ventricular defibrillation
4
physiological
1
condenser
1

Similar Publications

Inappropriate, excessive, or overly strenuous training of sport horses can result in long-term injury, including the premature cessation of a horse's sporting career. As a countermeasure, this study demonstrates the easy implementation of a biomechanical load monitoring system consisting of five commercial, multi-purpose inertial sensor units non-invasively attached to the horse's distal limbs and trunk. From the data obtained, specific parameters for evaluating gait and limb loads are derived, providing the basis for objective exercise load management and successful injury prevention.

View Article and Find Full Text PDF

In recent years, civil engineering has increasingly embraced communication tools for automation, with sensors playing a pivotal role, especially in structural health monitoring (SHM). These sensors enable precise data acquisition, measuring parameters like force, displacement, and temperature and transmit data for timely interventions to prevent failures. This approach reduces reliance on manual inspections, offering more accurate outcomes.

View Article and Find Full Text PDF

Monitoring cerebral oxygenation and metabolism, using a combination of invasive and non-invasive sensors, is vital due to frequent disruptions in hemodynamic regulation across various diseases. These sensors generate continuous high-frequency data streams, including intracranial pressure (ICP) and cerebral perfusion pressure (CPP), providing real-time insights into cerebral function. Analyzing these signals is crucial for understanding complex brain processes, identifying subtle patterns, and detecting anomalies.

View Article and Find Full Text PDF

Wearable Solutions Using Physiological Signals for Stress Monitoring on Individuals with Autism Spectrum Disorder (ASD): A Systematic Literature Review.

Sensors (Basel)

December 2024

REMIT (Research on Economics, Management and Information Technologies), IJP (Instituto Jurídico Portucalense), Universidade Portucalense, Rua Dr. António Bernardino de Almeida, 541-619, 4200-072 Porto, Portugal.

Some previous studies have focused on using physiological signals to detect stress in individuals with ASD through wearable devices, yet few have focused on how to design such solutions. Wearable technology may be a valuable tool to aid parents and caregivers in monitoring the emotional states of individuals with ASD who are at high risk of experiencing very stressful situations. However, effective wearable devices for individuals with ASD may need to differ from solutions for those without ASD.

View Article and Find Full Text PDF

Many children on the autism spectrum engage in challenging behaviors, like aggression, due to difficulties communicating and regulating their stress. Identifying effective intervention strategies is often subjective and time-consuming. Utilizing unobservable internal physiological data to predict strategy effectiveness may help simplify this process for teachers and parents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!