Previous attempts to elucidate whether a loss of hippocampal synapses occurs during aging provided conflicting results, possibly due to the unavailability, at the time, of unbiased methods for synapse quantitation. This study was designed to reexamine the issue by means of modern technical procedures that provide unbiased estimates of synaptic numbers. Groups of 14 young adult (5 months old) and 14 aged (28 months old) male Fischer-344 rats were compared. Synapses were examined in the middle (MML) and inner (IML) molecular layer of the hippocampal dentate gyrus, where synaptic contacts are predominantly formed by different systems of afferents, the entorhinal and commissural-associational fibers, respectively. The number of synapses per neuron was estimated with the aid of the stereological dissector technique. The results showed that the total number of synaptic contacts per neuron was significantly diminished in the MML (by 23.6%) and IML (by 22.7%) of aged rats relative to young adults. This age-related synaptic loss involved axospinous, but not axodendritic, junctions of the MML (-24.4%) and IML (-24.0%). Both perforated and nonperforated axospinous synapses (distinguished by a discontinuous or continuous postsynaptic density, respectively) exhibited an age-dependent decrease in numbers, though this decrease did not reach statistical significance in the case of perforated junctions of the IML. The observed age-related loss of axospinous synapses may underlie the reduction in the amplitude of excitatory postsynaptic potentials and the decline in functional synaptic plasticity detected in the dentate gyrus of senescent rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hipo.450020411 | DOI Listing |
Evidence shows that ultra-high dose-rate FLASH-radiotherapy (FLASH-RT) protects against normal tissue complications and functional decrements in the irradiated brain. Past work has shown that radiation-induced cognitive impairment, neuroinflammation and reduced structural complexity of granule cell neurons were not observed to the same extent after FLASH-RT (> MGy/s) compared to conventional dose-rate (CONV, 0.1 Gy/s) delivery.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
July 2024
UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
Which proportion of the long-term potentiation (LTP) expressed in the bulk of excitatory synapses is postsynaptic and which presynaptic remains debatable. To understand better the possible impact of either LTP form, we explored a realistic model of a CA1 pyramidal cell equipped with known membrane mechanisms and multiple, stochastic excitatory axo-spinous synapses. Our simulations were designed to establish an input-output transfer function, the dependence between the frequency of presynaptic action potentials triggering probabilistic synaptic discharges and the average frequency of postsynaptic spiking.
View Article and Find Full Text PDFHeliyon
March 2024
Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Introduction: The typical functionality of astrocytes was previously shown to be disrupted by Parkinson's disease (PD), which actively regulates synaptic neurotransmission. However, the morphological changes in astrocytes wrapping glutamatergic synapses in the striatum after dopamine (DA) neuronal degeneration is unclear.
Methods: We utilized a range of methodologies, encompassing the 6-hydroxydopamine (6OHDA)-induced PD model, as well as techniques such as immunohistochemistry, Western blotting, immunofluorescence and immunoelectron microscopy (IEM) to delve into the consequences of DA neuronal degeneration on the morphological attributes of perisynaptic astrocytes.
Eur J Neurosci
April 2024
Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA.
DYT1 dystonia is associated with decreased striatal dopamine release. In this study, we examined the possibility that ultrastructural changes of nigrostriatal dopamine terminals could contribute to this neurochemical imbalance using a serial block face/scanning electron microscope (SBF/SEM) and three-dimensional reconstruction to analyse striatal tyrosine hydroxylase-immunoreactive (TH-IR) terminals and their synapses in a DYT1(ΔE) knockin (DYT1-KI) mouse model of DYT1 dystonia. Furthermore, to study possible changes in vesicle packaging capacity of dopamine, we used transmission electron microscopy to assess the synaptic vesicle size in striatal dopamine terminals.
View Article and Find Full Text PDFMov Disord
June 2022
Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
Background: The network pathophysiology underlying the motor symptoms of Parkinson's disease (PD) is poorly understood. In models of late-stage PD, there is significant cell-specific remodeling of corticostriatal, axospinous glutamatergic synapses on principal spiny projection neurons (SPNs). Neurons in the centrolateral nucleus (CLN) of the thalamus that relay cerebellar activity to the striatum also make axospinous synapses on SPNs, but the extent to which they are affected in PD has not been definitively characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!