Download full-text PDF

Source
http://dx.doi.org/10.1038/172039a0DOI Listing

Publication Analysis

Top Keywords

control seed-borne
4
seed-borne disease
4
disease chaetomium
4
chaetomium cochlioides
4
cochlioides pall
4
pall natural
4
natural conditions
4
control
1
disease
1
chaetomium
1

Similar Publications

Exploiting Bacterial Pigmentation for Non-Destructive Detection of Seed-Borne Pathogens by Using Photoacoustic Techniques.

Sensors (Basel)

November 2024

Dipartimento di Scienze e Tecnologie Agrarie, Alimentari Ambientali e Forestali, Laboratorio di Patologia Vegetale Molecolare, Università degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy.

Seed-borne pathogens pose a significant threat to global food security. This study focuses on pv. (), a quarantine plant pathogen causing bacterial wilt of common beans.

View Article and Find Full Text PDF

Bacterial fruit blotch (BFB) caused by Paracidovorax citrulli is a devastating disease in cucurbit hosts such as watermelon. P. citrulli is a seed-borne pathogen, and contaminated seeds are the primary inoculum.

View Article and Find Full Text PDF

Endophytic bacteria residing within plant seeds are increasingly recognized for their potential to enhance plant growth and provide biocontrol against pathogens. Despite this, seed-borne endophytes remain underexplored in many crops, including tomato. In this study, we isolated and characterized bacterial endophytes from tomato seeds and evaluated their plant growth-promoting traits and antifungal activities.

View Article and Find Full Text PDF

Seed coating with fungicides is a common practice in controlling seed-borne diseases, but conventional methods often result in high toxicity to plants and soil. In this study, a nanoparticle formulation was successfully developed using the metal-organic framework UiO-66 as a carrier of the fungicide ipconazole (IPC), with a tannic acid (TA)-Zn coating serving as a protective layer. The IPC@UiO-66-TA-Zn nanoparticles provided a controlled release, triggered and regulated by environmental factors such as pH and temperature.

View Article and Find Full Text PDF

The use of microbe-based biological control for crop pests is recognized as an environmentally safe substitute for conventional chemical pesticides. However, the practical application of microbial inoculants in large-scale agriculture is underexplored, impeding their widespread commercial adoption. This study addresses the scarcity of research on effective delivery methods for microbial inoculants, particularly through seed coating, which has the potential to be a cost- and time-efficient strategy in crop management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!