Arylamine N-acetyltransferase catalyses the N-acetylation of primary arylamine and hydrazine drugs and chemicals. N-acetylation is subject to a polymorphism and humans can be categorized as either fast or slow acetylators according to their ability to N-acetylate polymorphic substrates in vivo. Previously, slow acetylation has been linked to four distinct polymorphic N-acetyltransferase (pnat) alleles each of which contains one or more point mutations within the coding region of the pnat gene. One new rare slow variant of pnat has been identified by cloning and sequencing the pnat DNA from an individual whose NAT phenotype was determined by in vivo acetylation of the polymorphic substrate sulphamethazine. This allele, designated S1c, differs from the wild type fast allele at nucleotide positions 341 and 803. A second new rare slow allotypic variant, designated S3, has been identified by resistance of the pnat specific DNA to digestion with the restriction enzymes Fok I and Bam HI. A method of genotyping individuals for the arylamine N-acetyltransferase (NAT) polymorphism is presented which correctly predicts the phenotype of greater than 95% (21 of 22) of individuals as measured by the extent of acetylation of sulphamethazine in urine. This refined genotyping method was applied to a clinical population of 48 Caucasians with classical or definite rheumatoid arthritis each receiving daily between 150 and 500 mg of the anti-rheumatic drug, D-penicillamine. There is no difference in the N-acetyltransferase phenotype of the individuals who developed proteinuria and the control group with no adverse effects.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00008571-199210000-00004DOI Listing

Publication Analysis

Top Keywords

arylamine n-acetyltransferase
12
slow allotypic
8
rare slow
8
n-acetyltransferase
5
slow
5
pnat
5
genotyping human
4
polymorphic
4
human polymorphic
4
arylamine
4

Similar Publications

Effect of Genetic Variants on Rosuvastatin Pharmacokinetics in Healthy Volunteers: Involvement of , and .

Int J Mol Sci

December 2024

Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain.

Statins are the primary drugs used to prevent cardiovascular disease by inhibiting the HMG-CoA reductase, an enzyme crucial for the synthesis of LDL cholesterol in the liver. A significant number of patients experience adverse drug reactions (ADRs), particularly musculoskeletal problems, which can affect adherence to treatment. Recent clinical guidelines, such as those from the Clinical Pharmacogenetics Implementation Consortium (CPIC) in 2022, recommend adjusting rosuvastatin doses based on genetic variations in the and genes to minimize ADRs and improve treatment efficacy.

View Article and Find Full Text PDF

One of the functions of placenta is to protect the fetus against harmful xenobiotics. Protective mechanisms of placenta are based on enzymes, e.g.

View Article and Find Full Text PDF

3,4-Dimethylaniline (3,4-DMA) is present in cigarette smoke and widely used as an intermediate in dyes, drugs, and pesticides. Nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells stably transfected with human CYP1A2 and N-acetyltransferase 1 (NAT1) alleles: (reference allele) or (the most common variant allele) were utilized to assess 3,4-DMA -acetylation and hypoxanthine phosphoribosyl transferase (HPRT) mutations, double-strand DNA breaks and reactive oxygen species (ROS). CHO cells expressing exhibited significantly ( < 0.

View Article and Find Full Text PDF

Introduction: Tuberculosis (TB) is the leading infectious cause of death globally. Despite WHO recommendations for TB preventive therapy (TPT), challenges persist, including incompletion of treatment and adverse drug reactions (ADRs). There is limited data on the 3-month isoniazid and rifapentine (3HP) pharmacokinetics, pharmacogenomics and their relation with ADRs.

View Article and Find Full Text PDF

The metabolic conversion of aromatic amines to N-acetylated forms in skin and keratinocytes depends on N-acetyltransferase-1 (NAT1). Common hair color ingredient such as para-phenylenediamine (PPD) causes allergic contact dermatitis. We explored how different electronic substituents on PPD aided NAT1 enzyme biotransform oxidative arylamine (AA) compounds G1-G13 by N-acetylation, NAT-1 activity assays, metabolism, and in vitro clearance investigations in human keratinocytes, while identifying NAT-1 protein levels by Western blot and qRT-PCR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!