The solution structure of eglin c based on measurements of many NOEs and coupling constants and its comparison with X-ray structures.

Protein Sci

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.

Published: June 1992

A high-precision solution structure of the elastase inhibitor eglin c was determined by NMR and distance geometry calculations. A large set of 947 nuclear Overhauser (NOE) distance constraints was identified, 417 of which were quantified from two-dimensional NOE spectra at short mixing times. In addition, a large number of homonuclear 1H-1H and heteronuclear 1H-15N vicinal coupling constants were used, and constraints on 42 chi 1 and 38 phi angles were obtained. Structure calculations were carried out using the distance geometry program DG-II. These calculations had a high convergence rate, in that 66 out of 75 calculations converged with maximum residual NOE violations ranging from 0.17 A to 0.47 A. The spread of the structures was characterized with average root mean square deviations () between the structures and a mean structure. To calculate the unbiased toward any single structure, a new procedure was used for structure alignment. A canonical structure was calculated from the mean distances, and all structures were aligned relative to that. Furthermore, an angular order parameter S was defined and used to characterize the spread of structures in torsion angle space. To obtain an accurate estimate of the precision of the structure, the number of calculations was increased until the and the angular order parameters stabilized. This was achieved after approximately 40 calculations. The structure consists of a well-defined core whose backbone deviates from the canonical structure ca. 0.4 A, a disordered N-terminal heptapeptide whose backbone deviates by 0.8-12 A, and a proteinase-binding loop whose backbone deviates up to 3.0 A. Analysis of the angular order parameters and inspection of the structures indicates that a hinge-bending motion of the binding loop may occur in solution. Secondary structures were analyzed by comparison of dihedral angle patterns. The high precision of the structure allows one to identify subtle differences with four crystal structures of eglin c determined in complexes with proteinases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2142248PMC
http://dx.doi.org/10.1002/pro.5560010606DOI Listing

Publication Analysis

Top Keywords

angular order
12
backbone deviates
12
structure
10
solution structure
8
coupling constants
8
structures
8
eglin determined
8
distance geometry
8
spread structures
8
canonical structure
8

Similar Publications

Purpose: There are attempts to assess tumor heterogeneity by texture analysis. However, the ordered subsets-expectation maximization (OSEM) reconstruction method has problems depicting heterogeneities. The aim of this study was to identify image reconstruction parameters that improve the ability to depict internal tumor necrosis using a self-made phantom that simulates internal necrosis.

View Article and Find Full Text PDF

A 1645 nm end-pumped dual-channel Er:YAG vector laser that could generate two cylindrical vector (CV) beams simultaneously with different polarization orders is demonstrated. The laser is designed in a two-arm structure, wherein each arm places a q-plate (QP) to introduce intra-cavity spin-orbital angular momentum conversion, leading to the oscillation of two various CV modes in two arms, and finally output along two directions, respectively. The favorable experimental results illustrate high power stability and polarization mode purity.

View Article and Find Full Text PDF

The practical implementation of terahertz (THz) imaging and spectroscopic systems in real operational conditions requires them to be of a compact size, to have enhanced functionality, and to be user-friendly. This work demonstrates the single-sided integration of Fresnel-zone-plate-based optical elements with InGaAs bow-tie diodes directly on a semiconductor chip. Numerical simulations were conducted to optimize the Fresnel zone plate's focal length and the InP substrate's thickness to achieve constructive interference at 600 GHz, room-temperature operation and achieve a sensitivity more than an order of magnitude higher-up to 24.

View Article and Find Full Text PDF

We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual -shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!