Download full-text PDF |
Source |
---|
Pharmaceuticals (Basel)
January 2025
Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
Background/objectives: Cancer remains one of the major challenges of our century. Organometallic ruthenium complexes are gaining recognition as a highly promising group of compounds in the development of cancer treatments.
Methods: Building on the auspicious results obtained for [Ru(η-CH)(PPh)(bipy)][CFSO] (TM34), our focus has shifted to examining the effects of incorporating bioactive ligands into the TM34 framework, particularly within the cyclopentadienyl ring.
Adv Mater
December 2024
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
The separation of xylene isomers, especially para-xylene, is a crucial but challenging process in the chemical industry due to their similar molecular dimensions. Here, a flexible metal-organic framework, Ni(ina), (ina = isonicotinic acid) is employed to effectively discriminate xylene isomers. The adsorbent with adaptive deformation accommodates the shapes of isomer molecules, thereby translating their subtle shape differences into characteristic framework deformation energies.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.
The bistability of multiple physical properties driven by external stimuli in a solid is a desired prerequisite for its application in memory devices with convenient data readout. We present a pathway for thermal bistability detectable in four physical properties: magnetic, light absorption, second-harmonic generation (SHG), and dielectric. We report a novel heterometallic (TBA){[Fe(phIN)][Re(CN)]} ⋅ (phIN) (1) (TBA=tetrabutylammonium cation, phIN=phenyl isonicotinate) cyanido-bridged chain material.
View Article and Find Full Text PDFJ Neurophysiol
November 2024
Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia.
Nat Commun
September 2024
Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong Province, China.
Self-assembled monolayers (SAMs) have become pivotal in achieving high-performance perovskite solar cells (PSCs) and organic solar cells (OSCs) by significantly minimizing interfacial energy losses. In this study, we propose a co-adsorb (CA) strategy employing a novel small molecule, 2-chloro-5-(trifluoromethyl)isonicotinic acid (PyCA-3F), introducing at the buried interface between 2PACz and the perovskite/organic layers. This approach effectively diminishes 2PACz's aggregation, enhancing surface smoothness and increasing work function for the modified SAM layer, thereby providing a flattened buried interface with a favorable heterointerface for perovskite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!