To investigate the neural mechanism of the expiratory activity of the inspiratory muscles during a cough, EMG of the respiratory muscles were recorded in anesthetized and tracheostomized dogs. A laparoscope was used to minimize injury to the abdominal muscles for implantation of the electrodes into the costal diaphragm. During the expulsive phase of a cough, the diaphragm was active in 7 of 12 dogs and the external intercostal muscle was active in 3 of 6 dogs. During a cough, the expiratory activity of the diaphragm, after the termination of its inspiratory activity, started at 52.9 +/- 24.6 ms, and that of external intercostal muscle started at 51.1 +/- 20.5 ms. The expiratory activity of the internal intercostal muscle and of the transversus abdominis started at 34.3 +/- 13.0 and 27.8 +/- 15.2 ms, respectively. The onset of expiratory activity of the inspiratory muscles is significantly later than that of expiratory muscles. Continuous activity in the expiratory muscles evoked by airway occlusion, i.e., Hering-Breuer reflex, was suppressed during the inspiratory phase of a cough, but not suppressed during the expulsive phase even when the expiratory activity of the diaphragm was observed. We concluded that the expiratory activity of inspiratory muscles is controlled independently of both expiratory activity of the expiratory muscles and inspiratory activity of the inspiratory muscles.

Download full-text PDF

Source
http://dx.doi.org/10.2170/jjphysiol.42.905DOI Listing

Publication Analysis

Top Keywords

expiratory activity
32
activity inspiratory
20
inspiratory muscles
20
intercostal muscle
12
expiratory muscles
12
expiratory
11
muscles
10
activity
10
inspiratory
8
muscles cough
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!