In order to reveal by absorption spectrophotometry the redox differences between the Plasmodium berghei infected erythrocyte lysates (MEL) and the healthy ones (HEL) we studied their interaction with the neutral red (NR) redox dye. The variation of the dye absorption intensity at 540 nm as a function of the hemoglobin content of the samples was attributed to the redox potential variation of the different hemoglobin aggregates formed in the samples containing different hemoglobin quantities. By short term treatment of the lysates with ascorbic acid in the presence of NR, great redox reactivity difference was proved between MEL and HEL as revealed by absorption and explained by the initial higher oxidation state of the Hb iron in MEL than in HEL.

Download full-text PDF

Source

Publication Analysis

Top Keywords

plasmodium berghei
8
berghei infected
8
infected erythrocyte
8
erythrocyte lysates
8
neutral red
8
mel hel
8
spectrophotometric assay
4
assay interaction
4
interaction plasmodium
4
lysates neutral
4

Similar Publications

Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes.

View Article and Find Full Text PDF

A scalable CRISPR-Cas9 gene editing system facilitates CRISPR screens in the malaria parasite Plasmodium berghei.

Nucleic Acids Res

January 2025

The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden.

Many Plasmodium genes remain uncharacterized due to low genetic tractability. Previous large-scale knockout screens have only been able to target about half of the genome in the more genetically tractable rodent malaria parasite Plasmodium berghei. To overcome this limitation, we have developed a scalable CRISPR system called P.

View Article and Find Full Text PDF

Background: Malaria parasites have gradually developed resistance to commonly used antimalarial drugs. For decades, chloroquine was the most widely used drug to eradicate malaria. However, with the spread of chloroquine resistance, many countries have adopted combination therapies that utilize two drugs acting synergistically instead of monotherapy.

View Article and Find Full Text PDF

Background: Malaria is one of the leading causes of morbidity and/or mortality in tropical Africa. The spread and development of resistance to chemical antimalarial drugs and the relatively high cost of the latter are problems associated with malaria control and are reasons to promote the use of plants to meet healthcare needs to treat malaria. The aim of this study was to evaluate antiplasmodial activities of extracts of (Mah quat), which is traditionally used for the treatment of malaria in the western region of Cameroon.

View Article and Find Full Text PDF

Malaria, a life-threatening disease caused by Plasmodium parasites, continues to pose a significant global health threat, with nearly 250 million infections and over 600 000 deaths reported annually by the WHO. Fighting malaria is particularly challenging partly due to the complex life cycle of the parasite. However, technological breakthroughs such as the development of the nucleoside-modified mRNA lipid nanoparticle (mRNA-LNP) vaccine platform, along with the discovery of novel conserved Plasmodium antigens such as the E140 protein, present new opportunities in malaria prevention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!