A pilot-scale (10 m3/d) anoxic/oxic membrane bioreactor (A/O MBR) was tested for dyeing wastewater treatment of woolen mill without wasting sludge in 125 days operation. Results showed that the effluent quality was excellent, i.e. effluent COD less than 25 mg/L, BOD5 under 5 mg/L, turbidity lower than 0.65 NTU, and colour less than 30 DT, and met with the reuse water standard of China. The removal rates of COD, BOD5, colour, and turbidity were 92.4%, 98.4%, 74% and 98.9%, respectively. Constant-flux operation mode was carried out in this study, and backwash was effective for reducing membrane fouling and maintaining constant flux. Membrane fouling had heavy impact on energy consumption. More attention should be paid on pipe selection and design for the sidestream MBR system, too.
Download full-text PDF |
Source |
---|
Membranes (Basel)
October 2024
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Ping Leyuan No. 100, Beijing 100124, China.
There is limited research on the relationship between membrane fouling and microbial metabolites in the nitrogen removal process coupled with membrane bioreactors (MBRs). In this study, we compared anoxic-oxic (AO) and partial nitritation-anammox (PNA), which were selected as representative heterotrophic and autotrophic biological nitrogen removal-coupled MBR processes for their fouling behavior. At the same nitrogen loading rate of 100 mg/L and mixed liquor suspended solids (MLSS) concentration of 4000 mg/L, PNA-MBR exhibited more severe membrane fouling compared to AO-MBR, as evidenced by monitoring changes in transmembrane pressure (TMP).
View Article and Find Full Text PDFWater Res
December 2024
Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China. Electronic address:
Sci Total Environ
December 2024
Center for Advanced Materials and Environmental Technology, National Center for Technological Progress, Ha Noi, Viet Nam.
Wastewater from seafood processing is a significant source of pollution, containing many harmful organic and inorganic compounds such as proteins, lipids, carbohydrates, nitrogen and phosphorus. This study investigated the enhancement of organic and nutrient removal efficiencies in seafood processing wastewater by integrating an Anaerobic Membrane Bioreactor (AnMBR) with an anoxic/oxic (AO) processes. A pilot-scale system was constructed with a capacity of 0.
View Article and Find Full Text PDFWater Res
November 2024
Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan. Electronic address:
In a membrane bioreactor (MBR) system, in situ sludge reduction techniques induce membrane fouling. To address this challenge, we incorporated a rotating mesh carrier, which can adsorb organic matter and provide a habitat for metazoans, into the anoxic tank of a conventional anoxic/oxic-MBR (A/O-MBR) system, termed rotating biological contactor-MBR (RBC-MBR), and evaluated treatment performance. Over 151 days, lab-scale RBC-MBR and A/O-MBR were used to treat municipal sewage.
View Article and Find Full Text PDFMembranes (Basel)
June 2024
China-Sri Lanka Joint Research and Demonstration Center for Water Technology, Ministry of Water Supply, Meewathura, Kandy 20400, Sri Lanka.
This study explores the effectiveness of an integrated anaerobic membrane bioreactor (AnMBR) coupled with an anoxic/oxic membrane bioreactor (A/O MBR) for the treatment of natural rubber industry wastewater with high sulfate, ammonia, and complex organic contents. This study was conducted at the lab-scale over a duration of 225 days to thoroughly investigate the efficiency and sustainability of the proposed treatment method. With a hydraulic retention time of 6 days for the total system, COD reductions were over 98%, which reduced the influent from 22,158 ± 2859 mg/L to 118 ± 74 mg/L of the effluent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!