Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We identified S100 immunoreactive cells in the brain of the lizard Gallotia galloti during ontogeny using immunohistochemical techniques for light and electron microscopy. In double labeling experiments with antibodies specific for S100A1 and S100B (anti-S100) and proliferative cell nuclear antigen (anti-PCNA), myelin basic protein (anti-MBP), phosphorylated neurofilaments (SMI-31), glial fibrillary acidic protein (anti-GFAP), or glutamine synthetase (anti-GS), we detected S100-like immunoreactivity in glial cells but never in neurons. Restricted areas of the ventricular zone were stained in the hypothalamus from E32 to postnatal stages, and in the telencephalon at E35, E36, and in adults. S100 immunoreactivity was observed predominantly in scattered PCNA-negative cells that increased in number from E35 to the adult stage in the myelinated tracts of the brain and had the appearance of oligodendrocytes. Quantitative analysis revealed that all of the S100-positive glial cells were GFAP-negative, whereas most of the S100-positive glial cells were GS-positive. Ultrastructurally, most of these S100-positive/GS-positive glial cells resembled oligodendrocytes of light and medium electron density. In adult lizards, a small subpopulation of astrocyte-like cells was also stained in the pretectum. We conclude that in the lizard S100 can be considered a marker of a subpopulation of oligodendrocytes rather than of astrocytes, as is the case in mammals. The S100-positive subpopulation of oligodendrocytes in the lizard could represent cells actively involved in the process of myelination during development and in the maintenance of myelin sheaths in the adult.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/neu.10258 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!