Among the many scientists who studied the cutaneous blood supply, Gino Pieri, an Italian Army surgeon operating during World War I, deserves attention. During those times, amputations were frequent, and flaps used to cover stumps were often inadequately designed and became necrotic, because of poor knowledge of the skin's blood supply. Pieri solved the problem after drawing a perforator map of human body skin, injecting the main arteries with methylene blue dye. His flaps were mainly designed along the course of what Ian Taylor would call "source" arteries, to capture the greatest perforators.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.PRS.0000076195.00494.8ADOI Listing

Publication Analysis

Top Keywords

blood supply
12
gino pieri
8
cutaneous blood
8
legacy capt
4
capt gino
4
pieri forgotten
4
forgotten italian
4
italian contribution
4
contribution study
4
study cutaneous
4

Similar Publications

Article Synopsis
  • This systematic review investigates how body composition, particularly skeletal muscle mass, impacts vascular health measures like arterial stiffness and structure.
  • Researchers conducted a thorough literature search and included 15 observational studies with over 21,000 participants, assessing various vascular health indices.
  • The findings show that higher fat-free mass correlates positively with carotid artery thickness, while body fat percentage is linked to arterial stiffness, indicating a need for further research on specific body composition factors and their health implications.
View Article and Find Full Text PDF

Background: Reaching parenchymal segments of the lateral lenticulostriate artery (LSA) perforators, which represent the medial resection limit in insular gliomas (IG), remains a challenge. The currently described methods are indirect and sometimes, imprecise.

Methods: We report an antegrade direct skeletonization technique to identify these tiny arteries at the medial end of IGs with an illustrative case of grade 2 astrocytoma.

View Article and Find Full Text PDF

Background: Although both the lateral sagittal and costoclavicular approaches are applied at the cord level in the infraclavicular region, there is a major difference between the distributions of the two approaches. We aimed to investigate the effects of this different distribution on tissue perfusion and oxygenation.

Methods: Sixty patients undergoing elective elbow, forearm, wrist and hand surgery under infraclavicular brachial plexus block were included in the study.

View Article and Find Full Text PDF

Background: Implementation of semaglutide weight loss therapy has been challenging due to drug supply and cost, underscoring a need to identify those who derive the greatest absolute benefit.

Objectives: Allocation of semaglutide was modeled according to coronary artery calcium (CAC) among individuals without diabetes or established atherosclerotic cardiovascular disease (CVD).

Methods: In this analysis, 3,129 participants in the MESA (Multi-Ethnic Study of Atherosclerosis) without diabetes or clinical CVD met body mass index criteria for semaglutide and underwent CAC scoring on noncontrast cardiac computed tomography.

View Article and Find Full Text PDF

Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!