Endogenous interferon gamma (IFNgamma) promotes the host response to primary tumors, and IFNgamma-insensitive tumors display increased tumorigenicity and can evade tumor surveillance mechanisms. Here we demonstrate that activating mutations of Ki-ras are sufficient to inhibit the expression of STAT1 and STAT2, transcription factors required for signaling by IFNs, providing a potential mechanism for the insensitivity of tumors to IFNs. We demonstrated that colon cancer cell lines with Ki-ras mutations display reduced expression of IFN-responsive genes compared with the cell lines that have retained wild type Ras and that inactivation of the mutant Ki-ras allele in the HCT116 colon cancer cell line is sufficient to restore the expression of STAT1, STAT2, and IRF-9. Accordingly, the expression of 27 interferon-inducible genes was reduced in HCT116 cells compared with the isogenic clones with targeted deletion of the mutant Ki-ras allele, Hkh2 and Hke-3. The expression of IFNgamma receptors did not differ among the isogenic cell lines. IFNgamma stimulated transcription of a STAT1-dependent reporter gene was impaired by RasV12, demonstrating a transmodulation of IFN/STAT signaling by activated Ras. Finally, we demonstrated that the expression of RasV12 in 293T cells is sufficient to inhibit the endogenous expression of STAT1 and STAT2, confirming the negative regulation of IFN signaling by oncogenic Ras. Our data demonstrate that the signaling initiated by activated Ki-ras interferes with the IFN/STAT signaling pathway and modulates the responsiveness of cancer cells to interferons. Furthermore, the data suggest that tumors harboring activating Ki-ras mutations may escape tumor surveillance mechanisms due to reduced responsiveness to IFNgamma.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M304721200DOI Listing

Publication Analysis

Top Keywords

stat1 stat2
16
expression stat1
12
cell lines
12
expression
9
tumor surveillance
8
surveillance mechanisms
8
sufficient inhibit
8
colon cancer
8
cancer cell
8
ki-ras mutations
8

Similar Publications

Influenza virus infects millions each year, contributing greatly to human morbidity and mortality. Upon viral infection, pathogen-associated molecular patterns activate pattern recognition receptors on host cells, triggering an immune response. The CD209 protein family, homologs of DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin), is thought to modulate immune responses to viruses.

View Article and Find Full Text PDF

Functional Involvement of Signal Transducers and Activators of Transcription in the Pathogenesis of Influenza A Virus.

Int J Mol Sci

December 2024

Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Signal transducers and activators of transcription (STATs) function both as signal transducers and transcription regulators. STAT proteins are involved in the signaling pathways of cytokines and growth factors; thus, they participate in various life activities and play especially critical roles in antiviral immunity. Convincing evidence suggests that STATs can establish innate immune status through multiple mechanisms, efficiently eliminating pathogens.

View Article and Find Full Text PDF

Cannabichromene (CBC) is one of the main cannabinoids found in the cannabis plant, and although less well known than tetrahydrocannabinol (THC) and cannabidiol (CBD), it is gaining attention for its potential therapeutic benefits. To date, CBC's known mechanisms of action include anti-inflammatory, analgesic, antidepressant, antimicrobial, neuroprotective, and anti-acne effects through TRP channel activation and the inhibition of inflammatory pathways, suggesting that it may have therapeutic potential in the treatment of inflammatory skin diseases, such as atopic dermatitis (AD), but its exact mechanism of action remains unclear. Therefore, in this study, we investigated the effects of CBC on Th2 cytokines along with the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways involved in AD pathogenesis.

View Article and Find Full Text PDF

SARS-CoV-2 S protein disrupts the formation of ISGF3 complex through conserved S2 subunit to antagonize type I interferon response.

J Virol

December 2024

State Key Laboratory of Virology, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan, China.

Unlabelled: Viral immunosuppression substantially affects the host immune response of infected patients and the protective efficacy of vaccines. Here, we found that the spike (S) protein, the major vaccine antigen of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), strongly suppresses host innate immunity by inhibiting interferon-stimulated gene (ISG) expression through both S1 and S2 subunits. Mechanistically, the S protein inhibited the formation of the classic interferon-stimulated gene factor 3 (ISGF3) complex composed of STAT1, STAT2, and IRF9 by competing with STAT2 for binding to IRF9, thereby impeding the transcription of ISGs.

View Article and Find Full Text PDF

Genome-wide CRISPR screen reveals specific role of type I interferon signaling pathway in Newcastle disease virus establishment of persistent infection.

Vet Microbiol

January 2025

Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China. Electronic address:

Newcastle disease virus (NDV) is a potent oncolytic agent that exhibits sensitivity to a wide range of cancer cells. Unfortunately, some cancer cells are able to resist NDV-mediated oncolysis, by developing a persistent infection. The mechanism of persistency of infection remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!