The aim of this work is to demonstrate that theoretical chemistry can be used as a complementary tool in determining geometric parameters of a number of uranyl complexes in solution, which are not observable by experimental methods. In addition, we propose plausible structures with partial geometric data from experimental results. A gradient corrected DFT methodology with relativistic effects is used employing a COSMO solvation model. The theoretical calculations show good agreement with experimental X-ray and EXAFS data for the triacetato-dioxo-uranium(VI) and tricarbonato-dioxo-uranium(VI) complexes and are used to assign possible geometries for dicalcium-tricarbonato-dioxo-uranium(VI) and malonato-dioxo-uranium(VI) complexes. The results of this exercise indicate that carbonate bonding in these complexes is mainly bidentate and that hydroxo bridging plays a critical role in the stabilization of the polynuclear uranyl complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic0342393 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!