Mosquito breeding within the wastewater irrigation system around the town of Haroonabad in the southern Punjab, Pakistan, was studied from July to September 2000 as part of a wider study of the costs and benefits of wastewater use in agriculture. The objective of this study was to assess the vector-borne human disease risks associated with mosquito species utilizing wastewater for breeding. Mosquito larvae were collected on a fortnightly basis from components of the wastewater disposal system and irrigated sites. In total, 133 samples were collected, about equally divided between agricultural sites and the wastewater disposal system. Overall, 17.3% of the samples were positive for Anopheles, 12.0% for Culex and 15.0% for Aedes. Four anopheline species, viz, Anopheles stephensi (84.3% of total anophelines), An. subpictus (11.8%), An. culicifacies (2.0%) and An. pulcherrimus (0.2%) were present, as were two species of Culex, viz, Cx. quinquefasciatus (66.5% of culicines) and Cx. tritaeniorhynchus (20.1%). Aedes were not identified to species level. The occurrence of different species was linked to particular habitats and habitat characteristics such as physical water condition, chemical water quality and the presence of fauna and flora. Anophelines and Aedes mosquitos were mainly collected during the month of July, while Culex were collected in September. The prevalence of established vectors of human diseases such as An. stephensi (malaria), Cx. tritaeniorhynchus (West Nile fever, Japanese encephalitis) and Cx. quinquefasciatus (Bancroftian filariasis, West Nile fever) in the wastewater system indicated that such habitats could contribute to vector-borne disease risks for human communities that are dependent upon wastewater use for their livelihoods. Wastewater disposal and irrigation systems provide a perennial source of water for vector mosquitos in semi-arid countries like Pakistan. Vector mosquitos exploit these sites if alternative breeding sites with better biological, physical, and chemical conditions are not abundant.
Download full-text PDF |
Source |
---|
Bull Environ Contam Toxicol
January 2025
Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
Ciprofloxacin (CIP) and oxytetracycline (OTC) are commonly detected antibiotic species in breeding wastewater, and microalgae-based antibiotic treatment technology is an environmentally friendly and cost-effective method for its removal. This study evaluated the effects of CIP and OTC on Scenedesmus sp. in the breeding wastewater tailwater and the removal mechanisms of antibiotics.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China.
The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy.
The materials removed in the oil separation units of wastewater treatment plants can be referred to as fat, oil and grease (FOG) waste. FOG waste accumulation in treatment plants can cause clogging of pipes, production of excessive scums and foams, and negatively affect air/liquid oxygen transfer. While conventional disposal routes of this material can be limited by its water and organic content, FOG can represent a source of bio-energy other than bio-diesel production.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Fashion Technology, PSG College of Technology, Coimbatore, 641004, India.
Domestic laundry wastewater is a major contributor to microfiber emissions in the aquatic environment. Among several mitigation measures, the use of external filters to capture microfibers from wastewater is one of the most efficient and commercially viable methods. This study attempted to develop an eco-friendly filtration medium to filter microfibers in laundry wastewater using luffa cylindrica fibers.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Environmental Sciences Postgraduate Program, Center of Engineering, Federal University of Pelotas, R. Benjamin Constant 989, Pelotas 96010-020, RS, Brazil.
Environmental pollution, stemming from the disposal of contaminants, poses severe threats to ecosystems and human health. The emergence of a new class of pollutants, termed emerging contaminants (ECs), in soil, water, and air has raised global concerns, aligning with the UN 2030 Agenda's Sustainable Development Goals. Aerogels, three-dimensional structures with high porosity and low density, offer promise in addressing this issue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!