Plasma and erythrocyte fatty acids have been measured in 9 patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency being treated with a low-fat diet. No significant abnormality was detected and in particular docosahexaenoic acid was not deficient.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1025175606891DOI Listing

Publication Analysis

Top Keywords

plasma erythrocyte
8
erythrocyte fatty
8
long-chain 3-hydroxyacyl-coa
8
3-hydroxyacyl-coa dehydrogenase
8
dehydrogenase deficiency
8
fatty acid
4
acid concentrations
4
concentrations long-chain
4
deficiency plasma
4
fatty acids
4

Similar Publications

Deciphering the role of hepcidin in iron metabolism and anemia management.

J Trace Elem Med Biol

January 2025

Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India. Electronic address:

One of the most common diseases worldwide is anemia, which is characterized by insufficient erythrocyte production. Numerous complex factors, such as chronic diseases, genetic mutations, and nutritional inadequacies, contribute to this widespread syndrome. This review focuses specifically on anemias caused by defective hepcidin production.

View Article and Find Full Text PDF

Polyunsaturated fatty acids (PUFAs) including omega-3 and omega-6 are obtained from diet and can be measured objectively in plasma or red blood cells (RBCs) membrane biomarkers, representing different dietary exposure windows. In vivo conversion of omega-3 and omega-6 PUFAs from short- to long-chain counterparts occurs via a shared metabolic pathway involving fatty acid desaturases and elongase. This analysis leveraged genome-wide association study (GWAS) summary statistics for RBC and plasma PUFAs, along with expression quantitative trait loci (eQTL) to estimate tissue-specific genetically predicted gene expression effects for delta-5 desaturase (FADS1), delta-6 desaturase (FADS2), and elongase (ELOVL2) on changes in RBC and plasma biomarkers.

View Article and Find Full Text PDF

Impaired lipid homeostasis and elevated lipid oxidation of erythrocyte membrane in adolescent depression.

Redox Biol

January 2025

Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China. Electronic address:

Adolescent depression is a globally concerned mental health issue, the pathophysiological mechanisms of which remain elusive. Membrane lipids play a crucial role in brain development and function, potentially serving as a crossroad for the abnormalities in neurotransmitters, neuroendocrine, inflammation, oxidative stress, and energy metabolism observed in depressed adolescents. The primary aim of this study was to investigate the erythrocyte membrane lipid profile in adolescent depression.

View Article and Find Full Text PDF

The etiology of rheumatoid arthritis (RA) is multifaceted. One of the hypothesized pathways that results in the progression of RA is regulatory T cell (Treg) dysfunction. The pro-osteoclastogenic and immunogenic characteristics of microribonucleic acid (microRNA)-21 (miR-21) suggest its role in RA progression.

View Article and Find Full Text PDF

Red blood cells (RBC), are the most unique and abundant cell types. The diameter of RBCs is 7-8 μm. They have an essential role in transporting circulatory oxygen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!