The Bcr-Abl fusion protein arising through the t(9;22)(q34;q11) reciprocal translocation is the causative agent in chronic myeloid leukemia and a subset of acute lymphocytic leukemia. Imatinib mesylate is a specific inhibitor of the Bcr-Abl kinase and has shown promising results in clinical studies. The structural relation between the Bcr-Abl oncogene and the tyrosine kinase inhibitor imatinib has recently been elucidated by an elegant crystal structure analysis, emphasizing the importance of dephosphorylated tyrosine 393 (Tyr393) in Bcr-Abl for access of the inhibitor to the kinase domain. By mutating this tyrosine to phenylalanine and thereby mimicking a constitutively dephosphorylated state, we now show that Ba/F3 cells transformed by this mutant demonstrate an increased sensitivity towards imatinib in vivo. This effect is not due to an impaired kinase activity of Bcr-Abl Y393F, since a synthetic substrate is phosphorylated with similar kinetics. Treatment of Ba/F3 cells transfected with Bcr-Abl wild type with a phosphatase inhibitor diminished the effect of imatinib, but did not influence the growth of Ba/F3 cells transfected with Bcr-AblY393F. The results support the findings of the crystal structure and indicate that Tyr393 indeed plays a significant role for the sensitivity of Bcr-Abl towards imatinib in vivo. These data implicate the regulation of Tyr393 phosphorylation as a potential mechanism of imatinib resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.leu.2403040DOI Listing

Publication Analysis

Top Keywords

imatinib vivo
12
ba/f3 cells
12
tyrosine 393
8
kinase domain
8
bcr-abl
8
sensitivity imatinib
8
crystal structure
8
cells transfected
8
imatinib
7
kinase
5

Similar Publications

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Imatinib resistance is a major obstacle to the successful treatment of gastrointestinal stromal tumors (GIST). Long non-coding RNAs (LncRNAs) have been identified as important regulatory factors in chemotherapy resistance. This study aimed to identify key lncRNAs involved in imatinib resistance of GISTs.

View Article and Find Full Text PDF
Article Synopsis
  • Gastrointestinal stromal tumors (GISTs) are rare cancers linked to mutations in the c-KIT gene, with one common mutation being a deletion in exon 11, as seen in an 82-year-old male patient diagnosed in June 2023.
  • The patient subsequently received a low-dose imatinib treatment protocol, starting at 400 mg/day and tapering down to 200 mg/day, which resulted in a reduction of the tumor size over several months.
  • The study suggests that low-dose imatinib can be an effective treatment option for GIST patients with the W557_K558 deletion, especially for those who cannot tolerate higher doses.
View Article and Find Full Text PDF

Background: The primary purpose of this study was to demonstrate the preventive effects of imatinib (IMA) on lipopolysaccharide (LPS)-induced inflammation in a mouse model of acute lung injury (ALI) and human umbilical vascular endothelial cells.

Methods: LPS stimulation for 24 h induced ALI and cell inflammation. The pathological results of the lungs were evaluated using the wet/dry weight ratio, pulmonary vascular permeability measurements, and myeloperoxidase immunohistochemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!