Regulation of telomerase reverse transcriptase gene activity by upstream stimulatory factor.

Oncogene

Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.

Published: September 2003

Upregulation of human telomerase reverse transcriptase (hTERT) transcription accounts for the immortalization of greater than 85% of all human tumor cells. However, the mechanism whereby hTERT expression is activated remains unresolved. Specifically, recent data challenging the role of Myc/Max in E-box-dependent activation of hTERT expression suggests that other E-box-binding proteins regulate hTERT transcription. Indeed, we now demonstrate that two such proteins, upstream stimulatory factor (USF) 1 and 2, readily associate with two E-boxes in the hTERT promoter in vitro and in vivo primarily as heterodimers, whereas Myc/Max does not. The avid binding of USF1/2 heterodimers to these E-boxes occurs in both hTERT-positive and -negative cells. In contrast, USF1/2 activates the hTERT promoter exclusively in hTERT-positive cells in a manner that is enhanced by the coactivator p300 and attenuated upon inhibiting p38-MAP kinase, a known modulator of USF activity. Collectively, our data indicate that USF binding to the hTERT promoter may be transcriptionally neutral, or even repressive, in nonimmortalized hTERT-negative somatic cells, but stimulatory in hTERT-positive cells where USF1/2 contributes to the acquisition and maintenance of immortality.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1206847DOI Listing

Publication Analysis

Top Keywords

htert promoter
12
telomerase reverse
8
reverse transcriptase
8
upstream stimulatory
8
stimulatory factor
8
htert transcription
8
htert expression
8
htert-positive cells
8
htert
7
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!