Cooling Bose-Einstein condensates below 500 picokelvin.

Science

Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Published: September 2003

Spin-polarized gaseous Bose-Einstein condensates were confined by a combination of gravitational and magnetic forces. The partially condensed atomic vapors were adiabatically decompressed by weakening the gravito-magnetic trap to a mean frequency of 1hertz, then evaporatively reduced in size to 2500 atoms. This lowered the peak condensate density to 5 x 10(10) atoms per cubic centimeter and cooled the entire cloud in all three dimensions to a kinetic temperature of 450 +/- 80 picokelvin. Such spin-polarized, dilute, and ultracold gases are important for spectroscopy, metrology, and atom optics.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1088827DOI Listing

Publication Analysis

Top Keywords

bose-einstein condensates
8
picokelvin spin-polarized
8
cooling bose-einstein
4
condensates 500
4
500 picokelvin
4
spin-polarized gaseous
4
gaseous bose-einstein
4
condensates confined
4
confined combination
4
combination gravitational
4

Similar Publications

The fractional nonlinear Schrödinger equation: Soliton turbulence, modulation instability, and extreme rogue waves.

Chaos

January 2025

KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

In this paper, we undertake a systematic exploration of soliton turbulent phenomena and the emergence of extreme rogue waves within the framework of the one-dimensional fractional nonlinear Schrödinger (FNLS) equation, which appears in many fields, such as nonlinear optics, Bose-Einstein condensates, plasma physics, etc. By initiating simulations with a plane wave modulated by small noise, we scrutinized the universal regimes of non-stationary turbulence through various statistical indices. Our analysis elucidates a marked increase in the probability of rogue wave occurrences as the system evolves within a certain range of Lévy index α, which can be ascribed to the broadened modulation instability bandwidth.

View Article and Find Full Text PDF

Continuous-wave perovskite polariton lasers.

Sci Adv

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.

Solution-processed semiconductor lasers are next-generation light sources for large-scale, bio-compatible and integrated photonics. However, overcoming their performance-cost trade-off to rival III-V laser functionalities is a long-standing challenge. Here, we demonstrate room-temperature continuous-wave perovskite polariton lasers exhibiting remarkably low thresholds of ~0.

View Article and Find Full Text PDF

Macroscopic coherence in quantum fluids allows the observation of interference effects in their wavefunctions, and enables applications such as superconducting quantum interference devices based on Josephson tunneling. The Josephson effect manifests in both fermionic and bosonic systems, and has been well studied in superfluid helium and atomic Bose-Einstein condensates. In exciton-polariton condensates-that offer a path to integrated semiconductor platforms-creating weak links in ring geometries has so far remained challenging.

View Article and Find Full Text PDF

One-Dimensional Excitonic Insulator of MTe (M = Mo, W) Atomic Wires.

Nano Lett

January 2025

Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.

Coulomb attraction with weak screening can trigger spontaneous exciton formation and condensation, resulting in a strongly correlated many-body ground state, namely, the excitonic insulator. One-dimensional (1D) materials natively have ineffective dielectric screening. For the first time, we demonstrate the excitonic instability of single atomic wires of transition metal telluride MTe (M = Mo, W), a family of 1D van der Waals (vdW) materials accessible in the laboratory.

View Article and Find Full Text PDF

Digital Feedback Loop in Paraxial Fluids of Light: A Gate to New Phenomena in Analog Physical Simulations.

Phys Rev Lett

December 2024

Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal and INESC TEC, Centre of Applied Photonics, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.

Easily accessible through tabletop experiments, paraxial fluids of light are emerging as promising platforms for the simulation and exploration of quantumlike phenomena. In particular, the analogy builds on a formal equivalence between the governing model for a Bose-Einstein condensate under the mean-field approximation and the model of laser propagation inside nonlinear optical media under the paraxial approximation. Yet, the fact that the role of time is played by the propagation distance in the analog system imposes strong bounds on the range of accessible phenomena due to the limited length of the nonlinear medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!