Levels of fibroblast growth factor 2 (FGF-2) and its receptor, FGFR1, are elevated in goiter, but whether this is a direct effect of TSH is unknown. We have determined the regulation of FGF-2 and FGFR1 synthesis by TSH in a rat thyroid cell line (FRTL5) and have used a replication-defective adenovirus (RAd) expressing dominant negative FGFR1 (RAdDN-FGFR1) to examine the role of FGFR signaling in vitro and in goiter induced in mice. TSH induced FGF-2 and increased the expression of FGFR1 in FRTL5 cells. Infection of TSH-stimulated FRTL5 cells with RAdDN-FGFR1 inhibited growth and prevented FGF-2-mediated inhibition of (125)I uptake. Similar effects were found in primary cultures of human thyroid follicular cells. For in vivo experiments, male BALB/c mice were injected systemically with RAdDN-FGFR1 or RAd encoding green fluorescent protein, and goiter was simultaneously induced. Mouse thyroid follicles were shown to be transduced with RAd encoding green fluorescent protein. Circulating TSH was elevated comparably in the two groups. In the RAdDN-FGFR1-injected animals, goiter induced over 14 d was significantly smaller, and the vascular volume increase seen in goiter was also diminished. We conclude that the FGF axis is important in thyroid growth and that RAdDN-FGFR1 effectively blocks FGF actions, offering a means to control goitrogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jc.2003-030333 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA, 94305, USA.
Partial oxidation of methane (POM) is achieved by forming air-methane microbubbles in saltwater to which an alternating electric field is applied using a copper oxide foam electrode. The solubility of methane is increased by putting it in contact with water containing dissolved KCl or NaCl (3%). Being fully dispersed as microbubbles (20-40 µm in diameter), methane reacts more fully with hydroxyl radicals (OH·) at the gas-water interface.
View Article and Find Full Text PDFFront Microbiol
January 2025
Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China.
Introduction: Soil acidification imperils soil health and hinders the agricultural sustainability. As being more tolerant than bacteria to soil acidification, so it would be more meaningful for agricultural management and crop yield to characterize fungal community in acidic soils and manifest its key drivers.
Method: This study investigated the composition and diversity of fungal communities and its key driving factors by collecting 90 soil samples from the acidic region of Jiaodong Peninsula China, spanning 3 × 10 km.
Front Microbiol
January 2025
School of Ecology and Environment, Tibet University, Lhasa, China.
Soil microbial communities play a vital role in accelerating nutrient cycling and stabilizing ecosystem functions in forests. However, the diversity of soil microbiome and the mechanisms driving their distribution patterns along elevational gradients in montane areas remain largely unknown. In this study, we investigated the soil microbial diversity along an elevational gradient from 650 m to 3,800 m above sea level in southeast Tibet, China, through DNA metabarcode sequencing of both the bacterial and fungal communities.
View Article and Find Full Text PDFNeuropsychopharmacology
January 2025
Grupo de Neurociencia de Sistemas, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina.
Emotion recognition is fundamental for effective social interactions among conspecifics. Impairments in affective state processing underlie several neuropsychiatric disorders, including schizophrenia, although the neurobiological substrate of these deficits remains unknown. We investigated the impact of early NMDA receptor hypofunction on socio-affective behaviors.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), 350 Hafez Avenue, Tehran, 159163-4311, Iran.
Oxidant (OX), the sum of ozone (O) and nitrogen dioxide (NO), is used to determine nitrogen oxides (NO)-independent regional contribution and NO-dependent local contribution. This study investigates OX trends and its local and regional levels in Tehran, Iran using the data from 21 monitoring stations from 2012 to 2022 and satellite remote sensing data (TROPOMI) for 2022. The spatiotemporal trends of O, NO, and OX are first examined using ground-based and remote sensing data, and then the polar plots are employed to identify the dominant directions of OX transport and its sources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!