The uterorelaxant effect of human chorionic gonadotropin (hCG) is regarded as an important mediator in maintenance of uterine quiescence during pregnancy with clinical potential for tocolysis, the mechanisms of which are unknown. The large conductance calcium-activated K(+) channel (BK(Ca)) is ubiquitously encountered in human uterine tissue and plays a significant role in modulating myometrial cell membrane potential and excitability. The objective of this study was to investigate the involvement of BK(Ca) channel function in the response of human myometrial cells to hCG. Single electrophysiological BK(Ca) channel recordings from freshly dispersed myocytes were obtained in the presence and absence of increasing hCG concentrations. Isometric tension studies, investigating the effects of hCG on isolated myometrial contractions, in the presence and absence of the BK(Ca) channel blocker, iberiotoxin, were performed. The hCG significantly increased the open-state probability of these channels in a concentration-dependent manner [control 0.036 +/- 0.01; 1 IU/ml hCG 0.065 +/- 0.014 (P = 0.262); 10 IU/ml hCG 0.111 +/- 0.009 (P = 0.001); and 100 IU/ml hCG 0.098 +/- 0.004 (P = 0.007)]. In vitro functional studies demonstrated that hCG exerted a significant concentration-dependent relaxant effect on human myometrial tissue. This effect was significantly attenuated by preincubation with iberiotoxin (P < 0.05). These findings outline that activation of BK(Ca) channel activity may explain the potent uterorelaxant effect of hCG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jc.2003-030221 | DOI Listing |
Nat Commun
January 2025
Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA.
Extracellular vesicles (EVs) are associated with intercellular communications, immune responses, viral pathogenicity, cardiovascular diseases, neurological disorders, and cancer progression. EVs deliver proteins, metabolites, and nucleic acids into recipient cells to effectively alter their physiological and biological response. During their transportation from the donor to the recipient cell EVs face differential ionic concentrations, which can be detrimental to their integrity and impact their cargo content.
View Article and Find Full Text PDFContact (Thousand Oaks)
December 2024
Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
Membrane contact sites (MCSs) are specialized regions where two or more organelle membranes come into close apposition, typically separated by only 10-30 nm, while remaining distinct and unfused. These sites play crucial roles in cellular homeostasis, signaling, and metabolism. This review focuses on ion channels, transporters, and receptors localized to MCSs, with particular emphasis on those associated with the plasma membrane and endoplasmic reticulum (ER).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona, USA.
Introduction: Cerebrovascular dysfunction occurs in Alzheimer's disease (AD), impairing hemodynamic regulation. Large conductance Ca-activated K channels (BK) regulate cerebrovascular reactivity and are impaired in AD. BK activity depends on intracellular Ca (Ca sparks) and nitro-oxidative post-translational modifications.
View Article and Find Full Text PDFBrain Res
December 2024
Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan.
Background: Epilepsy affects nearly 50 million people worldwide. Previous studies have indicated the neuroprotective effects of statin on several neuropathological conditions. However, it is very much unknown whether fluvastatin was able to alter the seizure types related to neuronal excitability and progression mediated by NMDA receptor activation, and the mechanisms involved in these actions are not completely understood so far.
View Article and Find Full Text PDFPeptides
December 2024
School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!