Binding affinity at the [3H]-BK binding site and activity as inositol phosphate (IP) production by the peptide bradykinin (BK) and the nonpeptide FR190997 were studied at wild-type or point-mutated human B2 receptors (hB2R) expressed in CHO cells. The effect of the following mutations were analyzed: E47A (TM1), W86A and T89A (TM2), I110A, L114A and S117A (TM3), T158A, M165T and L166F (TM4), T197A and S211A (TM5), F252A, W256A and F259A (TM6), S291A, F292A, Y295A and Y295F (TM7), and the double mutation W256A/Y295F. As the wild-type receptor-binding affinity of FR190997 was 40-fold lower than BK, whereas their agonist potency was comparable, both agonists produced similar maximal effects (Emax). Mutations were evaluated as affecting the affinity and/or efficacy of FR190997 compared with BK. Two mutations were found to impair the agonist affinity of both agonists drastically: W86A and F259A. BK agonist affinity (pEC50) was reduced by 1400- and 150-fold, and that of FR190997 was reduced by 400- and 25-fold, at the W86A and F259A mutant B2 receptors, respectively. Contrary to BK, the affinity of FR190997 was selectively decreased at I110A, Y295A, and Y295F mutants (>103-fold), and a different efficacy was measured at the Y295 mutants, FR190997 being devoid of the capability to trigger IP production at Y295A mutant. L114A, F252A, and W256A selectively impaired the efficacy of FR190997, whereas its binding affinity was not affected. As a consequence, FR190997 behaved as a high-affinity antagonist in blocking the IP production induced by BK. The lack of capability of FR190997 to activate or to bind the double mutant W256A/Y295F suggests that these residues are part of the same binding site, which is also important for receptor activation by the nonpeptide ligand. Overall, by means of mutational analysis, we indicate an hB2R recognition site for the nonpeptide agonist FR190997 (between TM3, 6, and 7), different from that of BK, and show that in the same binding crevice some mutations (L114, W256, and F252) are selectively responsible for the agonist properties of only FR190997.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574048 | PMC |
http://dx.doi.org/10.1038/sj.bjp.0705454 | DOI Listing |
Arch Pharm (Weinheim)
May 2023
Department of Chemistry, University of Patras, Rio University Campus, Patra, Greece.
Using Fujisawa's B2R agonist FR-190997, we recently demonstrated for the first time that agonism at the bradykinin receptor type 2 (B2R) produces substantial antiproliferative effects. FR-190997 elicited an EC of 80 nM in the triple-negative breast cancer cell line MDA-MB-231, a much superior performance to that exhibited by most approved breast cancer drugs. Consequently, we initiated a program aiming primarily at synthesizing adequate quantities of FR-190997 to support further in vitro and in vivo studies toward its repurposing for various cancers and, in parallel, enable the generation of novel FR-190997 analogs for an SAR study.
View Article and Find Full Text PDFEur J Med Chem
January 2021
Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece. Electronic address:
Βradykinin stimulation of B2 receptor is known to activate the oncogenic ERK pathway and overexpression of bradykinin receptors B1 and B2 has been reported to occur in glioma, colorectal and cervical cancers. B1R and B2R antagonists have been shown to reverse tumor proliferation and invasion. Paradoxically, B1R and B2R agonism has also been reported to elicit antiproliferative benefits.
View Article and Find Full Text PDFJ Ocul Pharmacol Ther
April 2015
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas.
Despite the availability of modern surgical procedures, new drug delivery techniques, health authority-approved single topical ocular drugs, and combination products thereof, there continues to be an unmet medical need for novel treatment modalities for preserving vision. This is especially true for the treatment of glaucoma and the high risk factor often associated with this ocular disease, elevated intraocular pressure (IOP). Undesirable local or systemic side effects, frequency of dosing, lack of sustained IOP lowering, and lack of prevention of diurnal IOP spikes are among the greatest challenges.
View Article and Find Full Text PDFExp Eye Res
November 2014
Institute of Neuroscience, University Miguel Hernandez-CSIC, San Juan Campus, Alicante, Spain.
We sought to characterize the ocular pharmacology, tolerability and intraocular pressure (IOP)-lowering efficacy of FR-190997, a non-peptidic bradykinin (BK) B2-receptor agonist. FR-190997 possessed a relatively high receptor binding affinity (Ki = 27 nM) and a high in vitro potency (EC50 = 18.3 ± 4.
View Article and Find Full Text PDFDrug Dev Res
June 2014
Pharmaceutical Research, Alcon Research, Ltd (A Novartis Company), Fort Worth, TX, USA.
Preclinical Research FR-190997 (8-[2,6-dichloro-3-[N-[(E)-4-(N-methylcarbamoyl) cinnaminoacetyl]-N-methylamino]benzyloxy]-2-methyl-4- (2-pyridylmethoxy) quinoline), a nonpeptide bradykinin (BK) B2-receptor-selective agonist, represents a novel class of ocular hypotensive agents. FR-190997 exhibited a high affinity for the human cloned B2-receptor (Ki = 9.8 nM) and a relatively high potency (EC50 = 155 nM) for mobilizing intracellular Ca(2+) ([Ca(2+)]i) in human ocular cells from nonpigmented ciliary epithelium; trabecular meshwork [h-TM]; ciliary muscle [h-CM] that are involved in regulating intraocular pressure (IOP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!