Outcome after prehospital defibrillation remains dire. The aim of the present study was to elucidate the pathophysiology of cardiac arrest and to suggest ways to improve outcome. Ventricular fibrillation (VF) was induced in air-ventilated pigs, after which ventilation was withdrawn. After 6.5 min of VF, ventilation with 100% oxygen was initiated. In six pigs (group I), defibrillation was the only treatment carried out. In another six pigs (group II), mechanical chest compression-decompression CPR (mCPR) was carried out for 3.5 min followed by a 40-s hands-off period before defibrillation. If unsuccessful, mCPR was resumed for a further 30 s before a second or a third, 40-s delayed, shock was given. In a final six pigs (group III) mCPR was applied for 3.5 min after which up to three shocks (if needed) were given during on-going mCPR. Return of spontaneous circulation (ROSC) occurred in none of the pigs in group I (0%), in 1 of six pigs in group II (17%) and in five of six pigs in group III (83%). During the first 3 min of VF arterial blood was transported to the venous circulation, with the consequence that the left ventricle emptied and the right ventricle became greatly distended. It took 2 min of mCPR to establish an adequate coronary perfusion pressure, which was lost when the mCPR was interrupted. During 30 s of mCPR coronary perfusion pressure was negative, but a carotid flow of about 25% of basal value was obtained. In this pig model, VF caused venous congestion, an empty left heart, and a greatly distended right heart within 3 min. Adequate heart massage before and during defibrillation greatly improved the likelihood of return of spontaneous circulation (ROSC).

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0300-9572(03)00265-xDOI Listing

Publication Analysis

Top Keywords

pigs group
24
group iii
8
return spontaneous
8
spontaneous circulation
8
circulation rosc
8
greatly distended
8
coronary perfusion
8
perfusion pressure
8
pigs
7
mcpr
7

Similar Publications

Article Synopsis
  • The aim of the study was to create a reproducible animal model of tricuspid regurgitation (TR) using a self-expanding nickel-titanium stent.
  • The experiment involved 10 pigs, 7 in the experimental group undergoing TR induction through stent implantation, while 3 served as controls without the stent.
  • Results showed significant changes in cardiac structure and function in the experimental group, indicating successful model establishment with no fatalities, making this approach effective for further research on right ventricular issues.
View Article and Find Full Text PDF

Traumatic brain injury (TBI) after high-energy, behind helmet blunt trauma (BHBT) is an important but poorly understood clinical entity often associated with apnea and death in humans. In this study, we use a swine model of high-energy BHBT to characterize key neuropathologies and their association with acute respiratory decompensation. Animals with either stable or critical vital signs were euthanized within 4 h after injury for neuropathological assessment, with emphasis on axonal and vascular pathologies in the brainstem.

View Article and Find Full Text PDF

Fluid-Structure Interaction Analysis of Trapezoidal and Arc-Shaped Membranes Mimicking the Organ of Corti.

Int J Numer Method Biomed Eng

January 2025

Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan.

In a previous study [H. Shintaku et al., Sensors and Actuators A: Physical 158 (2010): 183-192], an artificially developed auditory sensor device showed a frequency selectivity in the range from 6.

View Article and Find Full Text PDF

Pathogenicity and antigenic characterization of a novel highly virulent lineage 3 porcine reproductive and respiratory syndrome virus 2.

J Microbiol Immunol Infect

December 2024

Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Research and Technical Center for Sustainable and Intelligent Swine Production, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan. Electronic address:

Background/purpose: Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen with a negative economic impact on the global swine industry. In 2019, a suspected highly pathogenic strain, NPUST-108-929/2019 (108-929), was isolated from a pig farm in Pingtung with an outbreak of high mortality and analyzed. The characteristics of PRRSV 108-929 have barely been studied.

View Article and Find Full Text PDF

Protective effects of carnosic acid on growth performance, intestinal barrier, and cecal microbiota in yellow-feathered broilers under lipopolysaccharide challenge.

Poult Sci

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China. Electronic address:

This research was performed to investigate protective effects of carnosic acid on growth performance, intestinal barrier, and cecal microbiota of lipopolysaccharide-challenged broilers. Three hundred 1-day-old yellow-feathered broilers (male) were allocated randomly into 5 treatments, with 6 replicates per treatment, and 10 birds per replicate cage. Birds in both the control group (CON) and the lipopolysaccharide-challenged group were provided with a basal diet, while others were fed a basal diet supplemented with 20, 40, and 60 mg/kg carnosic acid (CA20, CA40, CA60), respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!