Ligand-free Heck reaction: Pd(OAc)2 as an active catalyst revisited.

J Org Chem

Department of Chemistry and Biochemistry, The Michael Faraday Laboratories, Northern Illinois University, DeKalb, Illinois 60115-2862, USA.

Published: September 2003

Palladium acetate was shown to be an extremely active catalyst for the Heck reaction of aryl bromides. Both the base and the solvent were found to have a fundamental influence on the efficiency of the reaction, with K(3)PO(4) and N,N-dimethylacetamide being the optimal base and solvent, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo034646wDOI Listing

Publication Analysis

Top Keywords

heck reaction
8
active catalyst
8
base solvent
8
ligand-free heck
4
reaction pdoac2
4
pdoac2 active
4
catalyst revisited
4
revisited palladium
4
palladium acetate
4
acetate extremely
4

Similar Publications

Background: Purulent meningitis poses a significant clinical challenge with high mortality. We present the case of a 54-year-old female transferred to our emergency department with suspected bacterial meningitis, later diagnosed as an Austrian syndrome.

Case Presentation: The patient exhibited subacute somnolence, severe headache, nausea and fever.

View Article and Find Full Text PDF

Enantioselective Heck/Tsuji-Trost reaction of flexible vinylic halides with 1,3-dienes.

Nat Commun

January 2025

College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P. R. China.

The enantioselective domino Heck/cross-coupling has emerged as a powerful tool in modern chemical synthesis for decades. Despite significant progress in relative rigid skeleton substrates, the implementation of asymmetric Heck/cross-coupling cascades of highly flexible haloalkene substrates remains a challenging and and long-standing goal. Here we report an efficient asymmetric domino Heck/Tsuji-Trost reaction of highly flexible vinylic halides with 1,3-dienes enabled by palladium catalysis.

View Article and Find Full Text PDF

The Heck reaction is one of the most well-known C-C (carbon-carbon) coupling reactions and was identified with the Nobel Prize in Chemistry in 2010. These reactions have been broadly utilized to prepare a different spectrum of heterocycles with applications in agrochemical and pharmaceutical industries. These reactions are commonly catalyzed by palladium due to its tolerance and expansive variousness of functional groups, which bears a remarkable power in creating C-C bonds.

View Article and Find Full Text PDF

Expression of concern for 'Nanocrystalline starch grafted palladium(II) complex for the Mizoroki-Heck reaction' by Sanny Verma , , 2013, , 14454-14459, https://doi.org/10.1039/C3DT51685G.

View Article and Find Full Text PDF

Asymmetric Heck Silylation of Unactivated Alkenes.

Angew Chem Int Ed Engl

January 2025

Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.

Heck silylation of unactivated alkenes is an efficient strategy for the synthesis of useful organosilicon compounds. However, extensive efforts have been dedicated to only achieving achiral molecules. Herein, a highly regio- and enantioselective cobalt-catalyzed Heck silylation of unactivated alkenes with hydrosilanes is reported for the first time, providing access to axially chiral alkenes in good to excellent yields with 87-98 % ee.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!