Nonspecific acid phosphatases share a conserved active site with mammalian glucose-6-phosphatases (G6Pase). In this work we examined the kinetics of the phosphorylation of glucose and dephosphorylation of glucose-6-phosphate (G6P) catalysed by the acid phosphatases from Shigella flexneri (PhoN-Sf) and Salmonella enterica (PhoN-Se). PhoN-Sf is able to phosphorylate glucose regiospecifically to G6P, glucose-1-phosphate is not formed. The K(m) for glucose using pyrophosphate (PPi) as a phosphate donor is 5.3 mM at pH 6.0. This value is not significantly affected by pH in the pH region 4-6. The K(m) value for G6P by contrast is much lower (0.02 mM). Our experiments show these bacterial acid phosphatases form a good model for G6Pase. We also studied the phosphorylation of inosine to inosine monophosphate (IMP) using PPi as the phosphate donor. PhoN-Sf regiospecifically phosphorylates inosine to inosine-5'-monophosphate whereas PhoN-Se produces both 5'IMP and 3'IMP. The data show that during catalysis an activated phospho-enzyme intermediate is formed that is able to transfer its phosphate group to water, glucose or inosine. A general mechanism is presented of the phosphorylation and dephosphorylation reaction catalysed by the acid phosphatases. Considering the nature of the substrates that are phosphorylated it is likely that this class of enzyme is able to phosphorylate a wide range of hydroxy compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b304012gDOI Listing

Publication Analysis

Top Keywords

acid phosphatases
20
phosphorylation dephosphorylation
8
bacterial acid
8
catalysed acid
8
ppi phosphate
8
phosphate donor
8
acid
5
phosphatases
5
phosphorylation
4
dephosphorylation polyhydroxy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!