(1) Liraglutide is a long-acting GLP-1 derivative, designed for once daily administration in type II diabetic patients. To investigate the effects of liraglutide on glycemic control and beta-cell mass in rat models of beta-cell deficiencies, studies were performed in male Zucker diabetic fatty (ZDF) rats and in 60% pancreatectomized rats. (2) When liraglutide was dosed s.c. at 150 microg kg-1 b.i.d. for 6 weeks in ZDF rats 6-8 weeks of age at study start, diabetes development was markedly attenuated. Blood glucose was approximately 12 mm lower compared to vehicle (P<0.0002), and plasma insulin was 2-3-fold higher during a normal 24-h feeding period (P<0.001). Judged by pair feeding, approximately 53% of the antihyperglycemic effect observed on 24-h glucose profiles was mediated by a reduction in food intake, which persisted throughout the study and averaged 16% (P<0.02). (3) Histological analyses revealed that beta-cell mass and proliferation were significantly lower in prediabetic animals still normoglycemic after 2 weeks treatment compared to vehicle-treated animals that had begun to develop diabetes. When the treatment period was 6 weeks, the liraglutide-treated animals were no longer completely normoglycemic and the beta-cell mass was significantly increased compared to overtly diabetic vehicle-treated animals, while beta-cell proliferation was unaffected. (4) In the experiments with 60% pancreatectomized rats, 8 days treatment with liraglutide resulted in a significantly lower glucose excursion in response to oral glucose compared to vehicle treatment. Again, part of the antihyperglycemic effect was due to reduced food intake. No effect of liraglutide on beta-cell mass was observed in these virtually normoglycemic animals. (5) In conclusion, treatment with liraglutide has marked antihyperglycemic effects in rodent models of beta-cell deficiencies, and the in vivo effect of liraglutide on beta-cell mass may in part depend on the metabolic state of the animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573996 | PMC |
http://dx.doi.org/10.1038/sj.bjp.0705397 | DOI Listing |
JTCVS Open
December 2024
Heart & Vascular Program, Baystate Health, University of Massachusetts Chan Medical School-Baystate, Springfield, Mass.
Objective: The management of preoperative medications is an essential component of perioperative care for the cardiac surgical patient. This turnkey order set is part of a series created by the Enhanced Recovery After Surgery Cardiac Society, first presented at the Annual Meeting of The American Association for Thoracic Surgery in 2023. Numerous guidelines and expert consensus documents have been published to provide guidance in preoperative medication management.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
Background: Disease-modifying therapies targeting the diverse pathophysiology of Alzheimer's disease (AD), including neuroinflammation, represent potentially important and novel approaches. The glucagon-like peptide-1 receptor agonist semaglutide is approved for the treatment of type 2 diabetes and obesity and has an established safety profile. Semaglutide may have a disease-modifying, neuroprotective effect in AD through multimodal mechanisms including neuroinflammatory, vascular, and other AD-related processes.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China; Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China. Electronic address:
Aims: Gestational diabetes mellitus (GDM) provides offspring with a hyper-metabolic intrauterine microenvironment. In this study, we aimed to identify key differential microRNAs in GDM-derived exosomes and explore the potential mechanisms of abnormal embryonic development of islets in offspring.
Main Methods: Exosomes were extracted from umbilical vein blood of GDM and non-GDM (NGDM) parturients for microRNA sequencing.
Biomolecules
November 2024
Centre for Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK.
Glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) are related intestinal L-cell derived secretory products. GLP-1 has been extensively studied in terms of its influence on metabolism, but less attention has been devoted to GLP-2 in this regard. The current study compares the effects of these proglucagon-derived peptides on pancreatic beta-cell function, as well as on glucose tolerance and appetite.
View Article and Find Full Text PDFPhytother Res
January 2025
Engineering Research Center of Applied Technology of Pharmacogenomics (Ministry of Education, China), Hunan Key Laboratory of Pharmacomicrobiomics, Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!