(1) We have investigated the effects of specific PKC isoforms in TNF-alpha mediated cellular damage using a human intestinal cell line (SCBN). (2) TNF-alpha treatment induced a decrease in the extent of intestinal cellular viability as determined by a formazan-based assay and an increase in the apoptotic index as assessed by immunohistology. These changes in cellular integrity were found to be related to the degradation of I-kappaBalpha, mobilization of NF-kappaB and release of mitochondrial cytochrome c. (3) TNF-alpha treatment also induced the activation of selective PKC isoforms which were associated with the decrease in cellular viability and an increase of cellular apoptosis. (4) Nonselective PKC antagonists, such as GF109203X and Gö6976 as well as isoform-selective PKC-inhibiting peptides would reverse the cellular injury as well as reduce the degradation of I-kappaBalpha and mitochondrial cytochrome c release. These effects were most highly correlated with changes in PKCdelta and epsilon primarily. (5) Intestinal cellular injury could be induced by treating cells with agonists selective for PKCdelta and epsilon mainly. (6) In conclusion, this study has shown that TNF-alpha treatment can induce the activation of PKCdelta and epsilon in the human intestinal cell line, SCBN, and this response is closely associated with an increase in cellular damage and apoptosis. PKCdelta and epsilon primarily mediate the release of mitochondrial cytochrome c and degradation of I-kappaBalpha and hence mobilization of NF-kappaB, which are responsible for the pathway leading to cell injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573997 | PMC |
http://dx.doi.org/10.1038/sj.bjp.0705398 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!