Evidence for rapid "metabolic switching" through lipoprotein lipase occupation of endothelial-binding sites.

J Mol Cell Cardiol

Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, British Columbia, Canada V6T 1Z3.

Published: September 2003

During diabetes, impaired glucose transport and utilization by the heart switches energy production to exclusive beta-oxidation of fatty acid (FA). In the current study, we examined the contribution of cardiac lipoprotein lipase (LPL) towards providing FA to the diabetic heart. Streptozotocin (STZ) caused an augmentation of LPL activity at the coronary lumen, an effect duplicated by diazoxide (DZ). With DZ, the amplification of LPL at the coronary luminal surface was determined to be exceptionally rapid. Interestingly, unlike DZ, the capability of hearts from STZ animals to maintain this amplified LPL activity was sustained in vitro. This increased enzyme in the hyperglycemic heart is likely unrelated to an increase in the number of capillary endothelial LPL-binding sites. Our data imply that binding sites for LPL in the control rat heart are only partly occupied by the enzyme and diabetes rapidly initiates filling of all of these sites. Phloridzin treatment of STZ animals normalized plasma glucose with no effect on luminal LPL suggesting that the effects of diabetes on LPL are also largely independent of changes in blood glucose. Both 2 and 8 U of insulin normalized plasma glucose in DZ-treated animals but only 8 U reversed DZ-induced augmentation of cardiac luminal LPL. Our data suggest that impaired intracellular glucose utilization allows rapid vectorial transfer of LPL to unoccupied binding sites to supply the diabetic heart with excess FA. The persistence of increased coronary luminal LPL even in a setting of normoglycemia may provide excessive FA to the diabetic heart with deleterious consequences over the long term.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0022-2828(03)00205-0DOI Listing

Publication Analysis

Top Keywords

diabetic heart
12
luminal lpl
12
lpl
10
lipoprotein lipase
8
lpl activity
8
coronary luminal
8
stz animals
8
binding sites
8
normalized plasma
8
plasma glucose
8

Similar Publications

Type 2 diabetes (T2D) frequently coexists with cardiorenal complications. Therefore, a holistic approach to patient management is required, with specialists such as primary care physicians, cardiologists, endocrinologists, and nephrologists working together to provide patient care. Although glycemic control is important in the management of T2D, patients with T2D and acceptable glycemic control are still at risk from cardiovascular (CV) events such as stroke, heart attack, and heart failure (HF).

View Article and Find Full Text PDF

Background: The Charlson Comorbidity Index (CCI) is a frequently used mortality predictor based on a scoring system for the number and type of patient comorbidities health researchers have used since the late 1980s. The initial purpose of the CCI was to classify comorbid conditions, which could alter the risk of patient mortality within a 1-year time frame. However, the CCI may not accurately reflect risk among American Indians because they are a small proportion of the US population and possibly lack representation in the original patient cohort.

View Article and Find Full Text PDF

Diabetic cardiomyopathy is a unique cardiomyopathy that is common in diabetic patients, and it is also a diabetic complication for which no effective treatment is currently available. Moreover, relevant studies have revealed that a link exists between type 2 diabetes and heart failure and that abnormal thickening of EAT is inextricably linked to the development of diabetic heart failure. Numerous clinical studies have demonstrated that EAT is implicated in the pathophysiologic process of diabetic myocardial disease.

View Article and Find Full Text PDF

Although studies have examined the association of the Relative Fat Mass (RFM, a novel anthropometric index used as a surrogate for whole-body fat percentage) with all-cause mortality, the association of RFM with diabetes-related mortality and heart disease mortality has not been thoroughly investigated. In addition, no study has compared the associations of RFM and waist circumference (a surrogate for intra-abdominal fat) with cause-specific mortality and all-cause mortality. In the present study, we addressed these knowledge gaps.

View Article and Find Full Text PDF

Diabetes mellitus is a chronic disease characterized by metabolic defects, including insulin deficiency and resistance. Individuals with diabetes are at increased risk of developing cardiovascular complications, such as atherosclerosis, coronary artery disease, and hypertension. Conventional treatment methods, though effective, are often challenging, costly, and may lead to systemic side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!