Escherichia coli and enterococci at beaches in the Grand Traverse Bay, Lake Michigan: sources, characteristics, and environmental pathways.

Environ Sci Technol

U.S. Geological Survey, 6520 Mercantile Way, Suite 5, Lansing, Michigan, 48911, USA.

Published: August 2003

This study quantified Escherichia coli (EC) and enterococci (ENT) in beach waters and dominant source materials, correlated these with ambient conditions, and determined selected EC genotypes and ENT phenotypes. Bathing-water ENT criteria were exceeded more frequently than EC criteria, providing conflicting interpretations of water quality. Dominant sources of EC and ENT were bird feces (10(8)/d/bird), storm drains (10(7)/d), and river water (10(11)/d); beach sands, shallow groundwater and detritus were additional sources. Beach-water EC genotypes and ENT phenotypes formed clusters with those from all source types, reflecting diffuse inputs. Some ENT isolates had phenotypes similar to those of human pathogens and/or exhibited high-level resistance to human-use antibiotics. EC and ENT concentrations were influenced by collection time and wind direction. There was a 48-72-h lag between rainfall and elevated EC concentrations at three southern shoreline beaches, but no such lag at western and eastern shoreline beaches, reflecting the influence of beach orientation with respect to cyclic (3-5 d) summer weather patterns. In addition to local contamination sources and processes, conceptual or predictive models of Great Lakes beach water quality should consider regional weather patterns, lake hydrodynamics, and the influence of monitoring method variables (time of day, frequency).

Download full-text PDF

Source
http://dx.doi.org/10.1021/es021062nDOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
coli enterococci
8
genotypes ent
8
ent phenotypes
8
water quality
8
shoreline beaches
8
weather patterns
8
ent
7
enterococci beaches
4
beaches grand
4

Similar Publications

Background: This study was done with objectives of determining the predictors of mortality in patients with Gram-Negative Bacilli (GNB) Blood stream Infection (BSI) along with estimating mortality attributable to carbapenem resistance (CR).

Methods: In this prospective cohort study (January 2023-September 2024), done in 3 tertiary care centres in India, patients found to have mono-microbial GNB BSI were included. Primary outcome was crude mortality at day 30 of onset of BSI.

View Article and Find Full Text PDF

The Stenotrophomonas maltophilia L2 cephalosporinase is one of two beta-lactamases which afford S. maltophilia beta-lactam resistance. With the overuse of beta-lactams, selective pressures have contributed to the evolution of these proteins, generating proteins with an extended spectrum of activity.

View Article and Find Full Text PDF

Modification of spore shells into probiotic carriers: selective loading and colonic delivery of and effective therapy of inflammatory bowel disease.

Food Funct

January 2025

Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.

Inflammatory bowel disease (IBD) is a chronic inflammation with a high incidence rate. Many probiotics, including (), have shown promise in IBD treatment. The therapeutic effects of most probiotics are greatly decided by the available live cells in the disease lesion, which is compromised as they pass through the gastric juice and intestinal tract, resulting in a loss of activity.

View Article and Find Full Text PDF

Pharmacodynamics of NOSO-502 studied in vitro and in vivo: determination of the dominant pharmacodynamic index driver.

J Antimicrob Chemother

January 2025

Bristol Centre for Antimicrobial Research & Evaluation (BCARE), Infection Sciences, Southmead Hospital, Westbury-on-Trym, Bristol, UK.

Background: NOSO-5O2 is the first clinical candidate of a new antimicrobial class-the odilorhabdins. The pharmacodynamics of NOSO-502 were studied in vitro and in vivo to establish the pharmacodynamic index (PDI) driver.

Methods: A dilutional pharmacokinetic system was used for in vitro experiments.

View Article and Find Full Text PDF

The accuracy of assigning fluorophore identity and abundance, known as spectral unmixing, in biological fluorescence microscopy images remains a significant challenge due to the substantial overlap in emission spectra among fluorophores. In traditional laser scanning confocal spectral microscopy, fluorophore information is acquired by recording emission spectra with a single combination of discrete excitation wavelengths. However, organic fluorophores possess characteristic excitation spectra in addition to their unique emission spectral signatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!