The iron storage protein, apoferritin, has a cavity in which iron is oxidized and stored as a hydrated oxide core. The size of the core is about 7 nm in diameter and is regulated by the cavity size. The cavity can be utilized as a nanoreactor to grow inorganic crystals. We incubated apoferritin in nickel or chromium salt solutions to fabricate hydroxide nanoparticles in the cavity. By using a solution containing dissolved carbon dioxide and by precisely controlling the pH, we succeeded in fabricating nickel and chromium cores. During the hydroxylation process of nickel ions a large portion of the apoferritin precipitated through bulk precipitation of nickel hydroxide. Bulk precipitation was suppressed by adding ammonium ions. However, even in the presence of ammonium ions the core did not form using a degassed solution. We concluded that carbonate ions were indispensable for core formation and that the ammonium ions prevented precipitation in the bulk solution. The optimized condition for nickel core formation was 0.3 mg/mL horse spleen apoferritin and 5 mM ammonium nickel sulfate in water containing dissolved carbon dioxide. The pH was maintained at 8.65 using two buffer solutions: 150 mM HEPES (pH 7.5) and 195 mM CAPSO (pH 9.5) with 20 mM ammonium at 23 degrees C. The pH had not changed after 48 h. After 24 h of incubation, all apoferritins remained in the supernatant and all of them had cores. Recombinant L-ferritin showed less precipitation even above a pH of 8.65. A chromium core was formed under the following conditions: 0.1 mg/mL apoferritin, 1 mM ammonium chromium sulfate, 100 mM HEPES (pH 7.5) with a solution containing dissolved carbon dioxide. About 80% of the supernatant apoferritin (0.07 mg/mL) formed a core. In nickel and chromium core formation, carbonate ions would play an important role in accelerating the hydroxylation in the apoferritin cavity compared to the bulk solution outside.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.10748DOI Listing

Publication Analysis

Top Keywords

nickel chromium
16
dissolved carbon
12
carbon dioxide
12
ammonium ions
12
core formation
12
apoferritin
8
apoferritin cavity
8
core
8
solution dissolved
8
bulk precipitation
8

Similar Publications

Objectives: Re-operations due to material degeneration carry a burden for patients with congenital heart disease (CHD). The study aim was to compare rapid vs. slow degeneration of biomaterials in CHD patients.

View Article and Find Full Text PDF

Sources analysis and risk assessment of heavy metals in soil in a polymetallic mining area in southeastern Hubei based on Monte Carlo simulation.

Ecotoxicol Environ Saf

December 2024

Chinese Academy of Geological Sciences, China Geology Survey, Ministry of Natural Resources, Beijing 100037, China.

This study investigates the pollution characteristics, spatial patterns, causes, and ecological risks of heavy metals in the soils of the southeastern Hubei polymetallic mining areas, specifically the Jilongshan (JLS) and Tonglushan (TLS) regions, located in the middle and lower reaches of the Yangtze River. The main findings are as follows: (1) Among the heavy metals present in the soil, copper (Cu) has the highest average concentration at 278.54 mg/kg, followed by zinc (Zn) at 161.

View Article and Find Full Text PDF

Landfilling is common in developing countries since it is the easiest and cheapest way of waste disposal, however, it leads to serious environmental problems such as soil, water, and air pollution. A landfill has a life span of fifteen years after which it is closed leaving the site unusable, as a result, effective methods are needed for restoring and reclaiming the closed landfill site for future use. Phytoremediation has emerged as a viable and environmentally friendly method, which uses green plants to remove pollutants from soil, air, and water.

View Article and Find Full Text PDF

The study aimed to explore the potential use of coal-fired power plant bottom ashes in Pleurotus ostreatus cultivation using spent coffee grounds. The study analyzed five compositions of growth substrate for mushrooms: pure coffee grounds (I) as a control sample; coffee grounds substrate with the addition of 1% (II); 5% (III); 10% (IV) bottom ash; and bottom ash alone (V). The study revealed that compared to the control sample (I), the addition of 1% bottom ash (II) did not affect the time of mycelium growth but slowed fruiting body growth by 4 days.

View Article and Find Full Text PDF

Rhizosphere microbial community structure and PICRUSt2 predicted metagenomes function in heavy metal contaminated sites: A case study of the Blesbokspruit wetland.

Sci Total Environ

December 2024

Centre for Competence in Environmental Biotechnology, College of Sciences, Environment and Technology, University of South Africa, Florida Science Campus, South Africa.

This study investigated the microbial diversity inhabiting the roots (rhizosphere) of macrophytes thriving along the Blesbokspruit wetland, South Africa's least conserved Ramsar site. The wetland suffers from decades of pollution from mining wastewater, agriculture, and sewage. The current study focused on three macrophytes: Phragmites australis (common reed), Typha capensis (bulrush), and Eichhornia crassipes (water hyacinth).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!