A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Morphological and enzymatic correlates of aerobic and burst performance in different populations of Trinidadian guppies Poecilia reticulata. | LitMetric

AI Article Synopsis

  • - The study focused on how aerobic capacity and burst speed in Trinidadian guppies relate to variations in organ size (like heart and gill mass) and enzyme activities (like citrate synthetase) across populations with different predation levels.
  • - Results showed that while organ sizes and enzyme activities varied independently of size, there was a correlation between body size and performance metrics, but not between specific traits and performance after accounting for size.
  • - The research indicated that guppy populations quickly evolve different life history traits based on predation intensity, revealing significant differences in physiological and performance traits between populations living in varying predatory environments.

Article Abstract

We examined the mechanistic basis for two whole-animal performance traits, aerobic capacity and burst speed, in six laboratory-reared Trinidadian guppy populations from different native drainages with contrasting levels of predation. Using within- and between-population variation, we tested whether variation in organs and organ systems (heart, gill and swimming motor mass) and the activities of several enzymes that support locomotion (citrate synthetase, lactate dehydrogenase and myofibrillar ATPase) are correlated with aerobic performance (maximum rates of oxygen consumption, (O(2)max)) or burst performance (maximum swim speed during escape responses). We also tested for associations between physiological traits and habitat type (different drainages and predation levels). Organ size and enzyme activities showed substantial size-independent variation, and both performance measures were strongly correlated to body size. After accounting for size effects, neither burst nor aerobic performance was strongly correlated to any organ size or enzymatic variable, or to each other. Two principal components (PCI, PC2) in both males and females accounted for most of the variance in the organ size and enzymatic variables. In both sexes, heart and gill mass tended to covary and were negatively associated with citrate synthetase and lactate dehydrogenase activity. In males (but not females), variation in aerobic performance was weakly but significantly correlated to variation in PC1, suggesting that heart and gill mass scale positively with (O(2)max). Neither of the component variables and no single morphological or enzymatic trait was correlated to burst speed in either sex. Evolutionary changes in important life history traits occur rapidly in guppy populations subjected to different predation intensities (high mortality in downstream sites inhabited by large predatory fish; low mortality in upstream sites lacking large predators). We found significant differences between stream drainages in all morphological variables and most enzymatic variables, but only the mass of the swimming motor and LDH activity were significantly affected by predation regime. Overall, our data show that microevolution has occurred in the physiological foundations of locomotor performance in guppies, but evolutionary changes in physiology do not closely correspond to the predation-induced changes in life history parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.00613DOI Listing

Publication Analysis

Top Keywords

heart gill
12
aerobic performance
12
organ size
12
morphological enzymatic
8
performance
8
burst performance
8
burst speed
8
guppy populations
8
swimming motor
8
citrate synthetase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!