AI Article Synopsis

Article Abstract

As landscapes change, mobility patterns of species may alter. Different mechanistic scenarios may, however, lead to particular patterns. Here, we tested conflicting predictions from two hypotheses on butterfly movements in relation to habitat fragmentation. According to the resource distribution hypothesis, butterflies in more fragmented landscapes would have higher levels of mobility as resources are more scattered. However, these butterflies could have lower levels of mobility as they experience 'hard' habitat boundaries more frequently (i.e. higher crossing costs) compared with butterflies in landscapes with continuous habitat; i.e. the behaviour-at-boundaries hypothesis. We studied movements, habitat boundary crossing and habitat preference of laboratory-reared individuals of Pararge aegeria that originated from woodland and agricultural landscapes, by using an experimental landscape as a common environment (outdoor cages) to test the predictions, taking into account sexual differences and weather. Woodland butterflies covered longer distances, were more prone to cross open-shade boundaries, travelled more frequently between woodland parts of the cages and were more at flight than agricultural butterflies. Our results support the behaviour-at-boundaries hypothesis, with 'softer' boundaries for woodland landscapes. Because the butterflies were reared in a common environment, the observed behavioural differences rely on heritable variation between populations from woodland and agricultural landscapes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1691440PMC
http://dx.doi.org/10.1098/rspb.2003.2459DOI Listing

Publication Analysis

Top Keywords

butterflies landscapes
8
levels mobility
8
behaviour-at-boundaries hypothesis
8
woodland agricultural
8
agricultural landscapes
8
common environment
8
landscapes
7
butterflies
7
habitat
5
woodland
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!