Characterization of phenol biodegradation by Comamonas testosteroni ZD4-1 and Pseudomonas aeruginosa ZD4-3.

Biomed Environ Sci

Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China.

Published: June 2003

Objective: To investigate the characteristic and biochemical mechanism about the phenol biodegradation by bacterial strains ZD 4-1 and ZD 4-3.

Methods: Bacterial strains ZD 4-1 and ZD 4-3 were isolated by using phenol as the sole source of carbon and energy, and identified by 16S rDNA sequence analysis. The concentrations of phenol and total organic carbon (TOC) were monitored to explore the degradation mechanism. The biodegradation intermediates were scanned at 375 nm by using a uv-vis spectrophotometer. The enzyme assays were performed to detect the activities of dioxygenases.

Results: Bacterial strains ZD 4-1 and ZD 4-3 were identified as Comamonas testosteroni and Pseudomonas aeruginosa by 16S rDNA sequence analysis, respectively. The growth of the two strains was observed on a variety of aromatic hydrocarbons. The strains ZD 4-1 and ZD 4-3 metabolized phenol via ortho-pathways and meta-pathways, respectively. In addition, the results of enzyme assays showed that the biodegradation efficiency of phenol by meta-pathways was higher than that by ortho-pathways. Finally, the results of induction experiment indicated that the catechol dioxygenases, both catechol 1,2-dioxygenase (C120) and catechol 2,3-dioxygenase (C230), were all inducible.

Conclusion: The strains ZD 4-1 and ZD 4-3 metabolize phenol through ortho-pathways and meta-pathway, respectively. Furthermore, the biodegradation efficiency of phenol by meta-pathways is higher than that by ortho-pathways.

Download full-text PDF

Source

Publication Analysis

Top Keywords

strains 4-1
20
4-1 4-3
16
bacterial strains
12
phenol biodegradation
8
comamonas testosteroni
8
pseudomonas aeruginosa
8
16s rdna
8
rdna sequence
8
sequence analysis
8
enzyme assays
8

Similar Publications

is a pathogenic fungus that infects flax and causes significant yield losses. In this study, we assembled the genomes of four highly virulent strains using the Oxford Nanopore Technologies (ONT, R10.4.

View Article and Find Full Text PDF

To determine the compatibility of two new biocontrol fungi with common chemical pesticides, this study examined the effects of three insecticides, namely, avermectin, imidacloprid, and acetamiprid, and three fungicides, namely, chlorogenonil, boscalid, and kasugamycin, on the mycelial growth and spore germination of strains IF-1106 and IJ-tg19. The insecticidal effects of mixed insecticides or fungicides with good compatibility with IJ-tg19 against were tested. The results showed that the six chemical pesticides exerted different degrees of inhibition on the mycelial growth of both strains, with an obvious dose-dependent effect.

View Article and Find Full Text PDF

Objective: Whole genome sequencing (WGS) can help identify transmission of pathogens causing healthcare-associated infections (HAIs). However, the current gold standard of short-read, Illumina-based WGS is labor and time intensive. Given recent improvements in long-read Oxford Nanopore Technologies (ONT) sequencing, we sought to establish a low resource approach providing accurate WGS-pathogen comparison within a time frame allowing for infection prevention and control (IPC) interventions.

View Article and Find Full Text PDF

Escherichia coli of different pathotypes are frequently involved in morbidity and mortality in animals and humans. The study aimed to identify E. coli pathotypes and determine antimicrobial resistance (AMR) profiles in Ethiopian smallholder livestock households.

View Article and Find Full Text PDF

Toxoplasmosis is a foodborne zoonotic parasitic disease caused by Toxoplasma gondii, which seriously threatens to human health and causes economic losses. At present, there is no effective vaccine strategy for the prevention and control of toxoplasmosis. T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!