Electrophoresis in microfluidic devices is becoming a useful analytical platform for a variety of biological assays. In this report, we present a method that allows for an increased sensitivity of detection of fluorescent molecules in microfluidic electrophoresis devices. This capability is provided by the implementation of a particular buffer system that is designed to initially function in an isotachophoretic (ITP) mode and, then after a controlled amount of electric current has been applied to the system, to transition to a zone electrophoretic mode. In the initial ITP mode, analytes dissolved in a large volume of injected sample are concentrated into a single narrow zone. After application of a sufficient and adjustable amount of electric current, the system switches into a zone electrophoretic mode, where the concentrated analytes are separated according to their electrophoretic mobilities. Application of this tandem ITP-zone electrophoretic strategy to the concentration, separation, and detection of fluorescent reporter molecules in a standard microfluidic device results in an approximately 50-fold increase in detection sensitivity relative to equivalent separations that are obtained with zone electrophoresis alone. Even with very long initial sample plugs (up to 3000 microm), this strategy produces electrophoretic separations with high resolutions and peak efficiencies. This strategy can be implemented to increase detection sensitivity in any standard microfluidic electrophoresis platform and does not require any specialized hardware or microchannel configurations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac0259921 | DOI Listing |
BioData Min
December 2024
School of Computing, Queen's University, 557 Goodwin Hall, 21-25 Union St, Kingston, K7L 2N8, Ontario, Canada.
Background: Epistasis, the phenomenon where the effect of one gene (or variant) is masked or modified by one or more other genes, significantly contributes to the phenotypic variance of complex traits. Traditionally, epistasis has been modeled using the Cartesian epistatic model, a multiplicative approach based on standard statistical regression. However, a recent study investigating epistasis in obesity-related traits has identified potential limitations of the Cartesian epistatic model, revealing that it likely only detects a fraction of the genetic interactions occurring in natural systems.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan.
Background: Mucocutaneous leishmaniasis (MCL) is a severe form of leishmaniasis causing chronic and destructive lesions. Accurate diagnosis is crucial for effective treatment. Traditional methods, such as the Montenegro skin test is delayed hypersensitivity test.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Infectious Disease Hospital of Heilongjiang Province, No. 1 Jian She Street, Hulan District, Harbin, Heilongjiang, 150500, China.
Background: Tuberculosis (TB) remains a significant global health issue. Drug-resistant TB and comorbidities exacerbate its burden, influencing treatment outcomes and healthcare utilization. Despite the growing prevalence of TB comorbidities, research often focuses on single comorbidities rather than comorbidity patterns.
View Article and Find Full Text PDFJ Dermatol Sci
December 2024
Department of Dermatology, Kurume University School of Medicine, Fukuoka, Japan.
Background: In the diagnosis of linear IgA bullous dermatosis (LABD), detection of IgA at the epidermal basement membrane zone and circulating IgA autoantibodies are essential. The disease has two subtypes, lamina lucida-type and sublamina densa-type, with 120 kDa LAD-1 and 97 kDa LABD97 as major autoantigens for lamina lucida-type. Normal human epidermal keratinocytes (NHEK) and HaCaT cells are widely used for immunoblotting (IB) in the diagnosis process, but they do not provide high sensitivity and semiquantitative analysis.
View Article and Find Full Text PDFAllergol Int
December 2024
Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Dermatology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan. Electronic address:
Background: Type I allergy to sweat is involved in the pathogenesis of atopic dermatitis (AD) and cholinergic urticaria (CholU), with MGL_1304 from Malassezia globosa being the major causative antigen. Currently, no standard diagnostic test exists for sweat allergy that uses serum.
Methods: The ImmunoCAP (iCAP) system to measure antigen-specific IgE was developed using recombinant MGL_1304 (rMGL_1304).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!