In this study, we examined the affinities of many (21) compounds such as hormones, pharmaceuticals, industrial chemicals, and phytoestrogens to the estrogen receptor (ER) by ER binding assay using fluorescence polarization (FP). This method is based on the competitive binding assay using fluorescein-labeled estradiol (F-E2), in which the polarization values decreased with the addition of the compounds (competitors). The obtained sigmoidal inhibition curves were transformed into the pseudo-Hill plots, and the concentrations at 50% inhibition (IC50) and Hill coefficients were obtained from the regression equations. We examined the relationship between the chemical structures and estrogenic activities, and finally classified the tested compounds into three categories, agonists, partial agonists and antagonists based on their Hill coefficients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b303985d | DOI Listing |
Gene
January 2025
Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
The oncoprotein c-Myc is expressed in all breast cancer subtypes, but its expression is higher in triple-negative breast cancer (TNBC) compared to estrogen receptor (ER+), progesterone receptor (PR+), or human epidermal growth factor receptor 2 (HER2+) positive tumors. The c-Myc gene is crucial for tumor progression and therapy resistance, impacting cell proliferation, differentiation, senescence, angiogenesis, immune evasion, metabolism, invasion, autophagy, apoptosis, chromosomal instability, and protein biosynthesis. Targeting c-Myc has emerged as a potential therapeutic strategy for TNBC, a highly aggressive and deadly breast cancer form.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
State Key Lab, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China. Electronic address:
Environmental endocrine disruptors constitute a category of exogenous compounds that interfere with the endocrine system's functions in organisms or cells. As a class of particularly representative endocrine-disrupting chemicals, the accumulation of per- and polyfluoroalkyl substances potentially leads to adverse health effects, including hormonal disruptions, developmental issues, and cancer. However, the classification of these disruptors is intricate, and the data on their potential health risks is scattered.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
Breast cancer (BC) commonly expresses estrogen receptors (ERs); hence, endocrine therapy targeting ERs is considered an effective treatment. Tamoxifen (TAM) resistance is an essential clinical complication leading to cancer progression and metastasis. This study investigated MicroRNAs (miRNAs) potentially implicated in drug resistance (miR-182-3p, miR-382-3p) or sensitivity (miR-93, miR- 142- 3p).
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road., Pathumwan, Bangkok, 10330, Thailand.
Zoledronic acid (ZA), a bisphosphonate, is commonly used in breast cancer patients with bone metastases to treat hypercalcemia and osteolysis. Recent studies showed the anti-cancer effects of ZA in breast cancer. This study further explored the synergistic effects of sequential and nonsequential ZA and doxorubicin (DOX) administration on estrogen receptor (ER)-positive and -negative breast cancer cell lines.
View Article and Find Full Text PDFMol Oncol
January 2025
Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Greece.
Plasma cell-free DNA (cfDNA) analysis to track estrogen receptor 1 (ESR1) mutations is highly beneficial for the identification of tumor molecular dynamics and the improvement of personalized treatments for patients with metastatic breast cancer (MBC). Plasma-cfDNA is, up to now, the most frequent liquid biopsy analyte used to evaluate ESR1 mutational status. Circulating tumor cell (CTC) enumeration and molecular characterization analysis provides important clinical information in patients with MBC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!