Macrophage migration inhibitory factor (MIF) plays an important role not only in the immune system, but also in tumorigenesis. Lysophosphatidic acid (LPA), a unique lipid mediator, shares several biological functions with MIF, including promotion of tumor cell growth and associated angiogenesis. In this study, we investigated the signaling cross-talk between these two molecules during tumorigenesis and angiogenesis. We first examined the expression of MIF mRNA on a murine colon cancer cell line, colon 26, by LPA. We found that LPA enhanced the expression of MIF mRNA in a dose-dependent manner in vitro. In parallel, LPA stimulated cell growth and up-regulated the vascular endothelial growth factor (VEGF). These effects were dramatically blocked by 21 base double strand (ds) RNA specific for mouse MIF mRNA (RNAi). In vivo, colon 26 cells treated with MIF dsRNA were injected into the backs of mice. The size of tumor volumes became significantly smaller than that of controls. Angiogenesis examined by a Millipore chamber method was also suppressed by the MIF dsRNA. Next, we evaluated the signal transduction pathway relevant to the mitogen-activated protein kinase (MAPK) and Akt/PI3K pathways in response to LPA by RNAi. Ras activation and phosphorylation of Akt and ERK1/2 were strongly suppressed by the dsRNA. On the other hand, tyrosine phosphorylation was minimally changed by the treatment. Taken together, these results suggest that MIF could promote both tumor cell growth and angiogenesis induced by LPA via both the Ras-MAPK and Ras-Akt/PI3K signaling pathways.
Download full-text PDF |
Source |
---|
Ecotoxicol Environ Saf
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China. Electronic address:
Cigarette smoke (CS) has detrimental effects on placental growth and embryo development, but the underlying mechanisms remain unclear. This study aims to investigate the impact of CS on trophoblast cell proliferation and regulated cell death (RCD) by examining its interference with iron-sulfur cluster (ISC) proteins and the CIA pathway. Exposure to CS disrupted the cytosolic ISC assembly (CIA) pathway, downregulated ISC proteins, and decreased ISC maturation in the placenta of rats exposed to passive smoking.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Translational Research Support Office, National Cancer Center Hospital East, Chiba, Japan.
Purpose: Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating -amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with -amplified mCRC from the phase II TRIUMPH trial.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2025
MeLis Institute, SynatAc Team, Inserm U1314/ UMR CNRS5284, France.
Background And Objectives: Breast cancers (BCs) of patients with paraneoplastic neurologic syndromes and anti-Yo antibodies (Yo-PNS) overexpress human epidermal growth factor receptor 2 (HER2) and display genetic alterations and overexpression of the Yo-onconeural antigens. They are infiltrated by an unusual proportion of B cells. We investigated whether these features were also observed in patients with PNS and anti-Ri antibodies (Ri-PNS).
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2025
Department of Neurology, Mayo Clinic, Rochester, MN.
Background And Objectives: While it is well characterized in adults, little is known about the clinical features of neurofascin 155-IgG4 autoimmune nodopathy (NF155-IgG4 AN) in the pediatric population. In this study, we aimed to describe the clinical features and treatment outcomes in children diagnosed with neurofascin 155-IgG4 autoimmune nodopathy (NF155-IgG4 AN).
Methods: Pediatric and adult patients with NF155-IgG4 AN were identified retrospectively through the Mayo Clinic Neuroimmunology Laboratory database.
ACS Appl Bio Mater
January 2025
Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.
Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!