Malignant tumours contain zones of chronic or acute hypoxia, which influence their prognosis and progression. The goal of our study was to understand the role of hypoxia in radio-resistance in a squamous cell carcinoma cell line of the head and neck (KB-3-1 cells). Cell growth was evaluated by Trypan blue exclusion under chronic hypoxia (3-5% O2) for 4 weeks or under normal conditions (21% O2). Cells were then gamma-irradiated either by X-ray (2-6 Gy) or UV-C radiation (0.001-10 J/cm(2)). Apoptosis was estimated by double staining with orange acridine and ethydium bromide and fluorescence microscopy. DNA content was estimated by FACS analysis. Expression of Bax, Bcl-2 and P53 was assessed by immunofluorescence and Western blotting. ROS production was measured by dichlorofluorescein fluorescence. Cell growth depends on oxygen tension. It decreased by 42 and 70% at 5 and 3% O2 compared to control with a significant cell cycle arrest rather than increased mortality. Hypoxic cells are more radio-resistant (x2.5) than normoxic cells. Under chronic hypoxia, Bcl-2 increased considerably in cells compared to control, while Bax and P53 did not change. After irradiation, in hypoxic cells very weak expression of the pro-apoptotic Bax protein and no translocation of Bax to the mitochondria were observed. In addition, irradiation of control KB-3-1 cells demonstrated a large increase in ROS production (x2) compared to cells irradiated identically under hypoxia. In conclusion, chronic hypoxia: i) seems to slow-down cell growth of KB-3-1 cells without inducing apoptosis, ii) induces Bcl-2 overexpression and prevents radiation-induced apoptosis by inhibiting ROS production and altering Bax subcellular redistribution and conformational changes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

chronic hypoxia
16
kb-3-1 cells
12
cell growth
12
ros production
12
cells
9
bax protein
8
compared control
8
hypoxic cells
8
bax
6
hypoxia
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!