AI Article Synopsis

  • The study investigates how imidapril, an ACE inhibitor, affects inflammatory vascular injury in mice lacking the AT1a receptor (AT1aKO) compared to normal mice (WT).
  • Results showed that imidapril reduced neointimal formation and the expression of inflammatory markers (MCP-1 and TNF-alpha) in both mouse types and increased cGMP levels.
  • The effectiveness of imidapril was diminished by blocking bradykinin receptors or inhibiting NO synthase, highlighting the importance of the bradykinin-NO system alongside angiotensin II suppression in vascular health.

Article Abstract

To examine the possible role of the bradykinin-NO system in the action of ACE inhibitors, we studied the effects of imidapril, an ACE inhibitor, on inflammatory vascular injury by using AT1a-receptor-deficient (AT1aKO) mice. A polyethylene cuff was placed around the femoral artery of AT1aKO mice and wild-type (WT; C57BL/6J) mice. Neointimal area in cross sections of the artery was measured 14 days after cuff placement. A low dose of imidapril (1 mg/kg per day), which did not affect blood pressure, was administered by gavage. Expression of monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)-alpha was detected by immunohistochemical staining and reverse transcriptase-polymerase chain reaction (RT-PCR) 7 days after the operation. Neointimal formation, vascular smooth muscle cell proliferation, and expression of MCP-1 and TNF-alpha were attenuated in the injured artery in AT1aKO mice compared with those in WT mice. Imidapril inhibited neointimal formation, DNA synthesis of vascular smooth muscle cells, and expression of MCP-1 and TNF-alpha in AT1aKO mice as well as in WT mice. In addition, imidapril increased tissue cGMP content after cuff placement. These inhibitory effects of imidapril were significantly reduced or abolished by a bradykinin receptor antagonist, Hoechst 140, or an NO synthase inhibitor, L-NAME, both in WT and AT1aKO mice. Treatment with imidapril did not change AT2 receptor and ACE expression detected by RT-PCR in the injured artery. These results indicate that not only blockade of angiotensin II production but also activation of the bradykinin-NO system plays an important role in the beneficial effects of imidapril on vascular remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.HYP.0000092440.52239.39DOI Listing

Publication Analysis

Top Keywords

at1ako mice
20
effects imidapril
12
imidapril
8
imidapril vascular
8
vascular injury
8
bradykinin-no system
8
mice
8
artery at1ako
8
cuff placement
8
neointimal formation
8

Similar Publications

Liver metastases from colorectal cancer (CRC) are a clinically significant problem. The renin-angiotensin system is involved in tumor growth and metastases. This study was designed to evaluate the role of angiotensin II subtype receptor 1a (AT1a) in the formation of liver metastasis in CRC.

View Article and Find Full Text PDF

Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade.

PLoS One

July 2017

Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan.

Browning of white adipose tissue (WAT) has been highlighted as a new possible therapeutic target for obesity, diabetes and lipid metabolic disorders, because WAT browning could increase energy expenditure and reduce adiposity. The new clusters of adipocytes that emerge with WAT browning have been named 'beige' or 'brite' adipocytes. Recent reports have indicated that the renin-angiotensin system (RAS) plays a role in various aspects of adipose tissue physiology and dysfunction.

View Article and Find Full Text PDF

Mechanisms of AT1a receptor-mediated uptake of angiotensin II by proximal tubule cells: a novel role of the multiligand endocytic receptor megalin.

Am J Physiol Renal Physiol

July 2014

Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Cardiovascular and Renal Research Center, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi

The present study tested the hypothesis that the multiligand endocytic receptor megalin is partially involved in the uptake of ANG II and downstream signaling responses in mouse proximal tubule cells (mPCT) by interacting with AT1a receptors. mPCT cells of wild-type (WT) and AT1a receptor-deficient (AT1a-KO) mice were treated with vehicle, the AT1 receptor blocker losartan (10 μM), or a selective megalin small interfering (si) RNA for 48 h. The uptake of fluorescein (FITC)-labeled ANG II (10 nM, 37°C) and downstream signaling responses were analyzed by fluorescence imaging and Western blotting.

View Article and Find Full Text PDF

Angiotensin type 1a receptor-deficient mice develop diabetes-induced cardiac dysfunction, which is prevented by renin-angiotensin system inhibitors.

Cardiovasc Diabetol

November 2013

Division of Molecular Cardiology, Department of Medicine, Texas A&M Health Science Center, College of Medicine; Scott & White; Central Texas Veterans Health Care System, 1901 South First Street, Building 205, Temple, Texas 76504, USA.

Background: Diabetes-induced organ damage is significantly associated with the activation of the renin-angiotensin system (RAS). Recently, several studies have demonstrated a change in the RAS from an extracellular to an intracellular system, in several cell types, in response to high ambient glucose levels. In cardiac myocytes, intracellular angiotensin (ANG) II synthesis and actions are ACE and AT1 independent, respectively.

View Article and Find Full Text PDF

The angiotensin II type 1 receptor (AT(1)R) mediates most hypertensive actions of angiotensin II. To understand the molecular regulation of the AT(1)R in normal physiology and pathophysiology, methods for sensitive and specific detection of AT(1)R protein are required. Here, we examined the specificity of a panel of putative AT(1)R antibodies that are commonly used by investigators in the field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!